Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Curie Marie
Xem chi tiết
Almoez Ali
2 tháng 5 2022 lúc 9:42

undefined

Marie Curie
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Akai Haruma
11 tháng 5 2020 lúc 0:10

Lời giải:
Vì $a+b\geq 1\Rightarrow b\geq 1-a; a\geq 1-b$. Do đó:

\(A\geq \frac{8a^2+1-a}{4a}+b^2=2a+\frac{1}{4a}-\frac{1}{4}+b^2\)

\(\geq a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2=\left(a+\frac{1}{4a}\right)+(b^2-b+\frac{1}{4})+\frac{1}{2}\)

Áp dụng BĐT AM-GM: \(a+\frac{1}{4a}\geq 1\)

$b^2-b+\frac{1}{4}=(b-\frac{1}{2})^2\geq 0$

Do đó: $A\geq 1+0+\frac{1}{2}=\frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

Vũ Thảo Vy
Xem chi tiết
Nguyễn Vũ Thắng
24 tháng 12 2018 lúc 20:05

\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)

\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))

\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)

\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)

\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Dấu = khi \(a=b=\frac{1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2018 lúc 7:16

Đáp án B

3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c

Đặt  t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0

⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.

Trần Việt Khoa
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Vũ Đình Thái
10 tháng 1 2021 lúc 19:43

Xét \(a+b\ge1\Leftrightarrow b\ge1-a\)

Xét \(Q\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=\dfrac{8a^2}{4a}+\dfrac{1}{4a}-\dfrac{a}{4a}+1-2a+a^2\)

        \(=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}\)\(=\left(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\right)+\dfrac{3}{4}\)

Áp dụng Cosi được \(Q\ge3\sqrt[3]{a^2\cdot\dfrac{1}{8a}\cdot\dfrac{1}{8a}}+\dfrac{3}{4}\)\(=3\sqrt[3]{\dfrac{1}{64}}+\dfrac{3}{4}=\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\) 

Vậy \(Qmin=\dfrac{3}{2}\) khi \(a=b=\dfrac{1}{2}\)

Phạm Kim Oanh
Xem chi tiết
Chiến Nguyễn Trọng
25 tháng 2 2022 lúc 21:40

Ta có : \(9=a^2+a^2+b^2+a^2+b^2+bc+bc+c^2+c^2\ge9\sqrt[9]{a^6\cdot b^6\cdot c^6}=9\sqrt[3]{a^2\cdot b^2\cdot c^2}\Rightarrow abc\le1\) Áp dụng bđt Cô-si vào các số dương : \(a^2+\dfrac{1}{b^2}+\dfrac{1}{b^2}+\dfrac{1}{b^2}\ge4\sqrt[4]{\dfrac{a^2}{b^6}}=4\sqrt{\dfrac{a}{b^3}}\Rightarrow\sqrt{a^2+\dfrac{3}{b^2}}\ge2\cdot\sqrt[4]{\dfrac{a}{b^3}}\)  

CM tương tự ta được: \(\sqrt{b^2+\dfrac{3}{c^2}}\ge2\sqrt[4]{\dfrac{b}{c^3}};\sqrt{c^2+\dfrac{3}{a^2}}\ge2\sqrt[4]{\dfrac{c}{a^3}}\Rightarrow P\ge2\cdot\left(\sqrt[4]{\dfrac{a}{b^3}}+\sqrt[4]{\dfrac{b}{c^3}}+\sqrt[4]{\dfrac{c}{a^3}}\right)\ge2\cdot3\cdot\sqrt[12]{\dfrac{a}{b^3}\cdot\dfrac{b}{c^3}\cdot\dfrac{c}{a^3}}=6\sqrt[12]{\dfrac{1}{\left(abc\right)^2}}=6\) Dấu = xảy ra \(\Leftrightarrow a=b=c=1\)

Pham Quoc Hieu
Xem chi tiết
Đoàn Trần Quỳnh Hương
8 tháng 2 2023 lúc 8:48

Từ giả thiết \(1\le a\le2\) =>  ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)

Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)

Vì vậy ta có P:

\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức