Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Người Vô Danh
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Trần Minh Hoàng
14 tháng 3 2021 lúc 19:16

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

nguyễn ngọc phương linh
Xem chi tiết
tth_new
3 tháng 11 2019 lúc 10:50

\(3\left(4a^2+6b^2+3c^2\right)-4\left(a+b+c\right)^2\)

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{16}\ge0\)

Rồi làm nốt.

Khách vãng lai đã xóa
tth_new
3 tháng 11 2019 lúc 13:00

Sửa lại tí: 

\(=\frac{\left(4a-2b-2c\right)^2+6\left(2b-c\right)^2}{2}\ge0\) nha!

Do đó \(4a^2+6b^2+3c^2\ge\frac{4}{3}\left(a+b+c\right)^2=12\)

Vậy...

Khách vãng lai đã xóa
Nguyễn Ngọc Tuấn Anh
3 tháng 11 2019 lúc 20:50

Dùng bunhiacopxki là xong nhé bạn 

\(\left(\left(2a\right)^2+\left(\sqrt{6}b\right)^2+\left(\sqrt{3}c\right)^2\right)\left(1^2+\left(\frac{\sqrt{6}}{3}\right)^2+\left(\frac{2\sqrt{3}}{3}\right)^2\right)\ge\left(2a+2b+2c\right)^2=36\)

\(\Leftrightarrow\left(4a^2+6b^2+3c^2\right)\left(1+\frac{2}{3}+\frac{4}{3}\right)\ge36\)

\(\Leftrightarrow4a^2+6b^2+3c^2\ge12\)

Dấu bằng xảy ra \(\Leftrightarrow...tựghinha\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=1\\c=\frac{1}{2}\end{cases}}\)

Đầu tiên bạn phải đoán rằng ta sẽ dùng bunhiacopxki để giải vì vế trái có a^2,b^2,c^2 nên dùng bunhia ta sẽ kết hợp với các số để triệt tiêu về dạng m(a+b+c) , thật ra m tùy ý theo bạn chọn để phù hợp với bộ số đằng sau, mình chọn ở đây m=2 do có 4a^2 nên mình chọn phần ứng với nó là 1 để có 2a tiếp tục như vậy để có 2b,2c rồi sau đó giải đk dấu bằng xảy ra là xong 

Khách vãng lai đã xóa
Khả Nhi
Xem chi tiết
Hà Nguyễn Anh Quân
6 tháng 4 2020 lúc 15:05

Điền số thích hợp vào ô trống : 10/12 < 17/ ? < 10/11

Khách vãng lai đã xóa
tth_new
7 tháng 4 2020 lúc 16:41

Dùng cái này:

Do: $1/2\, \left( 2\,a+3 \right)  \left( a-3 \right) ^{2} \geqq 0$ với mọi a > 0.

Nên: ${a}^{3}\geqq 9/2\,{a}^{2}-27/2 $ (*)

Áp dụng BĐT (*)...

Khách vãng lai đã xóa
Aug.21
8 tháng 4 2020 lúc 12:32

Ta có :

(2a+3)(a-3)2 \(\ge\) 0 <=> (2a+3)(a2 -6a+9) \(\ge\) 0

<=> 2a3 - 12a2 +18a +3a3 -18a+7 <=> 2a3 - 9a2 + 27 \(\ge\) 0

Dấu " = " xảy ra <=> x=3

Tương tự ta có : 2b3 -9b2 +27 \(\ge\) 0; 2c3-9c2+27\(\ge\) 0

Mà a2 +b2 + c=27 (gt)

Do đó : 2(a3+b3+c3)-9(a2+b2+c2)+27.3 \(\ge\) 0

<=> 2( a3 + b3 +c3)\(\ge\) 6.27 <=> a3+b3+c3 \(\ge\) 81

Dấu "=" xảy ra <=> a=b=c=3

Vậy GTNN của S= a3+b3+c3 là 81

Khách vãng lai đã xóa
Trần Thị Hà
Xem chi tiết
Bình Minh Lê
Xem chi tiết
Nguyễn Thanh Bình
20 tháng 12 2022 lúc 22:12

Từ đề bài, a, b, c có giá trị là 1,2,3. Suy ra giá trị nhỏ nhất của tổng a+b+c= 1+2+3=6. Vậy giá trị nhỏ nhất của tổng a+b+c là 6.

na na
Xem chi tiết
hotboy2002
Xem chi tiết
nguyen van bi
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Khách vãng lai đã xóa
hotboy2002
Xem chi tiết