1+2+3+...+16
rút gọn biểu thức
a) A=16^8 -1/(2+1)(2^2+1)(2^4+1)(2^8+1(3^16+1)
b) B=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/9^16-1
giúp mk vs ah mk đang cần gấp ah
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
Tính A = 1 + 1/2 . (1+2) + 1/3 . (1+2+3) + ... + 1/16 . (1+2+3+...+16)
\(A=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{16}\left(1+2+3+...+16\right)\\ \Rightarrow A=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\\ \Rightarrow A=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{16}{2}+\dfrac{17}{2}\\ \Rightarrow A=\dfrac{1}{2}\left(2+3+4+...+17\right)=76\)
A=1+1/2.(1+2)+1/3.(1+2+3)+...+1/16.(1+2+3+...+16)=?
M=1+1/2(1+2)+1/3(1+2+3)+...+1/16(1+2+3+...+16)
M=1+1/2.(1+2)+1/3.(1+2+3)+......+1/16.(1+2+3+....+16)
Tính A=1+1/2.(1+2)+1/3.(1+2+3)+...1/16.(1+2+3+..+16)
M=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+...+16) = ?
Tính nhanh: 1+1/2(1+2)+1/3(1+2+3)+...+1/16(1+2+3+...+16)
Lời giải:
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+...+\frac{1}{16}(1+2+3+...+16)$
$=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{16}.\frac{16.17}{2}$
$=1+\frac{3}{2}+\frac{4}{2}+....+\frac{17}{2}$
$=\frac{2+3+4+...+17}{2}=\frac{1+2+3+...+17}{2}-\frac{1}{2}=\frac{17.18}{2.2}-\frac{1}{2}=76$
tính P = 1 + 1/2.(1+2)+1/3.(1+2+3)+...+1/16.(1+2+3+4+...+16)
xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2
=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n
P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2
P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2
P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n
Bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...
xét: Sn = 1 + 2 + 3 + 4 + ... + n (1)
=> Sn = n + (n-1) + .. + 2 + 1 (2)
thấy 1+n = 2 + (n-1) = 3+(n-2) = n-1 + 2 = n+1
lấy (1) + (2) và với chú ý trên ta có:
2.Sn = (n+1) + (n+1) +..+ (n+1) = n(n+1) (vì n số hạng giống nhau)
=> Sn = n(n+1)/2 => Sn /n = (n+1)/2
=> P = 1 + S2/2 + S3/3 + S4/4 +...+ Sn /n
P = 1 + 3/2 + 4/2 + 5/2 +.. + (n+1)/2
P = 2(2 + 3 + 4 + ... + n + n+1) = 2(1+2 +..+ n+1) - 2 = 2.S(n+1) - 2
P = 2.(n+1)(n+2)/2 - 2 = (n+1)(n+2) - 2 = n²+3n
bài toán chỉ tính đến S16/16 (tức n = 16)
P = 16² + 3.16 = ...
Tính: A=1+1/2(1+2)+1/3(1+2+3)+....+1/16(1+2+3+....+16)
\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\).
\(A=1+\frac{1}{2}.3+\frac{1}{3}.6+....+\frac{1}{16}.136\)
\(A=1+1,5+2+...+8,5\)
\(A=\frac{\left(8,5+1\right)\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
A = 1 + 1/2 x 2x3/2 + 1/3 x 3x4/2 +.............+ 1/16 x 16x17/2
A = 1+ 3/2 +4/2 + ............+ 17/2
A = 1+ (3+4+5+.........+17)/2
A = 1+75 = 76
1+2+3x(-2)+4x(1+2+3)+...+16x(1+2+3+...+15)