Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Akai Haruma
1 tháng 3 2022 lúc 0:33

Lời giải:
$f(x)=ax^2+bx+c$ liên tục trên $[0; \frac{1}{3}]$
$f(0)=c$

$f(\frac{1}{3})=\frac{1}{9}a+\frac{1}{3}b+c$
$\Rightarrow 18f(\frac{1}{3})=2a+6b+18c$

$\Rightarrow f(0)+18f(\frac{1}{3})=2a+6b+19c=0$

$\Rightarrow f(0)=-18f(\frac{1}{3})$

$\Rightarrow f(0).f(\frac{1}{3})=-18f(\frac{1}{3})^2\leq 0$

$\Rightarrow$ pt luôn có nghiệm trong $[0; \frac{1}{3}]$ (đpcm)

Thái Thị Mỹ Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2021 lúc 20:34

Câu 1: 

Ta có: \(ax+\left(2a-1\right)y+3=0\)

\(\Leftrightarrow\left(2a-1\right)y=-ax-3\)

\(\Leftrightarrow y=\dfrac{-ax-3}{2a-1}\)

Để (d) đi qua điểm M(1;-1) thì

Thay x=1 và y=-1 vào hàm số \(y=\dfrac{-ax-3}{2a-1}\), ta được:

\(\dfrac{-a\cdot1-3}{2a-1}=-1\)

\(\Leftrightarrow-a-3=-1\left(2a-1\right)\)

\(\Leftrightarrow-a-3=-2a+1\)

\(\Leftrightarrow-a+2a=1+3\)

hay a=4

Vậy: a=4

và hệ số góc của (d) là 4

Nguyễn Linh Chi
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 20:07

Đường tròn (C) tâm I(1;-3) bán kính \(R=4\)

Tiếp tuyến d vuông góc với 6x+8y-3=0 nên nhận \(\left(4;-3\right)\) là 1 vtpt

Tiếp tuyến d có dạng: \(4x-3y+c=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|4.1-3.\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

\(\Leftrightarrow\left|c+13\right|=20\Rightarrow\left[{}\begin{matrix}c=7\left(loại\right)\\c=-33\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\\c=-33\end{matrix}\right.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:52

a) Xét hệ phương trình: \(\left\{ \begin{array}{l}y = 0\\y = ax + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = \frac{{ - b}}{a}\end{array} \right.\) . Vậy đường thẳng \(\Delta \) cắt trục hoành tại điểm \(\left( {\frac{{ - b}}{a};0} \right)\).

b) Phương trình đường thẳng \({\Delta _o}\) đi qua O(0, 0) và song song (hoặc trùng) với\(\Delta \) là \(y = a\left( {x - 0} \right) + 0 = {\rm{a}}x\).

c) Ta có: \({\alpha _\Delta } = {\alpha _{{\Delta _o}}}\).

d) Từ câu b) và điều kiện \(x_o^2 + y_o^2 = 1\) trong đó \({y_o}\) là tung độ của điểm M, ta suy ra \({x_o} \ne 0\). Do đó: \(\tan {\alpha _\Delta } = \tan {\alpha _{{\Delta _o}}} = \frac{{{y_o}}}{{{x_o}}} = a\).

Jelly303
Xem chi tiết
Nguyễn Ngọc Lộc
28 tháng 6 2021 lúc 20:56

Ta có : Đường thẳng I cách đều 2 đường thẳng d và denta

\(\Rightarrow\dfrac{\left|2x+y-3\right|}{\sqrt{5}}=\dfrac{\left|4x+2y-1\right|}{2\sqrt{5}}\)

\(\Rightarrow2\left|2x+y-3\right|=\left|4x+2y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+2y-6=4x+2y-1\\4x+2y-6=-4x-2y+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6=1\left(L\right)\\8x+4y-7=0\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{8}{7}+\left(-\dfrac{4}{7}\right)+1=0\)

\(\Rightarrow a+b=-\dfrac{8}{7}-\dfrac{4}{7}=-\dfrac{12}{7}\)

Vậy ..

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 14:39

a: Thay x=1 và y=2 vào y=ax+b, ta được:

\(a\cdot1+b=2\)

=>a+b=2

Thay x=0 và y=1 vào y=ax+b, ta được:

\(a\cdot0+b=1\)

=>b=1

a+b=2

=>a=2-b

=>a=2-1=1

Vậy: phương trình đường thẳng AB là y=x+1

b: Thay x=-1 vào y=x+1, ta được:

\(y=-1+1=0=y_C\)

vậy: C(-1;0) thuộc đường thẳng y=x+1

hay A,B,C thẳng hàng

c: Thay x=3 và y=2 vào y=x+1, ta được:

\(3+1=2\)

=>4=2(sai)

=>D(3;2) không thuộc đường thẳng AB

d: Gọi phương trình đường thẳng (d) cần tìm có dạng là y=ax+b(b\(\ne\)0)

Vì (d) vuông góc với AB nên \(a\cdot1=-1\)

=>a=-1

=>y=-x+b 

Thay x=3 và y=2 vào y=-x+b, ta được:

b-3=2

=>b=5

vậy: (d): y=-x+5

Nguyễn Văn Khoa
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2020 lúc 15:25

a/ Do \(y=ax+b\) qua A;B nên ta có:

\(\left\{{}\begin{matrix}2a+b=1\\-a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\) \(\Rightarrow y=x-1\)

b/ Thay tọa độ C vào đường thẳng \(y=x-1\) \(\Rightarrow-1=0-1\) (thỏa mãn)

Vậy C thuộc đường thẳng AB hay A;B;C thẳng hàng

c/ Để (d) qua B;C

\(\Rightarrow\left\{{}\begin{matrix}-\left(2a-b\right)+3a-1=-2\\0\left(2a-b\right)+3a-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\3a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Hồng Vũ
Xem chi tiết
Hồ Nhật Phi
8 tháng 11 2021 lúc 15:51

a) Vector pháp tuyến của hai mặt phẳng (\(\alpha\)) và (\(\beta\)lần lượt là \(\overrightarrow{n_{\alpha}}\)=(4;1;2) và \(\overrightarrow{n_{\beta}}\)=(2; -2;1). Do hai vector này không cùng phương nên hai mặt phẳng (\(\alpha\)) và (\(\beta\)cắt nhau.

b) Với x=0, \(\left\{{}\begin{matrix}y+2z+1=0\\-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-1\end{matrix}\right.\).

Với x=1, \(\left\{{}\begin{matrix}4+y+2z+1=0\\2-2y+z+3=0\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}y=1\\z=-3\end{matrix}\right.\).

Suy ra đường thẳng d đi qua hai điểm A(0;1; -1) và B(1;1; -3), \(\overrightarrow{u_d}\)=\(\overrightarrow{AB}\)=(1;0;-2).

Phương trình cần tìm:

d: \(\left\{{}\begin{matrix}x=t\\y=1\\z=-1-2t\end{matrix}\right.\).

c) Gọi M'(x;y;z). Phương trình đường thẳng d' đi qua M(4;2;1) và nhận vector \(\overrightarrow{n_{\alpha}}\)=(4;1;2) làm vector chỉ phương là:

d': \(\left\{{}\begin{matrix}x=4+4t\\y=2+t\\z=1+2t\end{matrix}\right.\). Gọi M"(4+4t; 2+t; 1+2t) ∈ d'.

M"=d'\(\cap\)(α) ⇒ 4(4+4t)+2+t+2(1+2t)+1=0 ⇒ t= -1 ⇒ M''(0;1; -1).

Điểm M' đối xứng với M qua M'', suy ra M'(-4;0; -3).

d) Gọi N'(a;b;c). Phương trình mp(P) đi qua N(0;2;4) và nhận vector \(\overrightarrow{u_d}\)=(1;0; -2) làm vector pháp tuyến là:

(P): x -2z+8=0. Gọi N''(t;1; -1 -2t) ∈ d.

N''=d\(\cap\)(P) ⇒ t -2( -1 -2t)+8=0 ⇒ t= -2 ⇒ N''(-2;1;3).

Điểm N' đối xứng với N qua N'', suy ra N'(-4;0;2).

mai a
Xem chi tiết
Đời về cơ bản là buồn cư...
10 tháng 3 2019 lúc 14:37

Thay \(x=1;y=-1\) vào phương trình đường thẳng \(\left(d\right)\) , ta có:

\(a\cdot1+-1\left(2a-1\right)+3=0\)

\(\Leftrightarrow a-2a+1+3=0\)

\(\Leftrightarrow a-2a+4=0\)

\(\Leftrightarrow\left(a-1\right)^2+2=0\) (vô lí do \(\left(a-1\right)^2+2\ge2>0\forall a\)

Do đó phương trình ban đầu vô nghiệm

Vậy đường thẳng \(\left(d\right)\) không đi qua điểm M

Nguyễn Phương Linh
30 tháng 5 2020 lúc 9:35

sorry

Khách vãng lai đã xóa