chứng minh rằng nếu
0<a1<a2<...<a9 thì \(\frac{a1+a2+...+a9}{a3+a6+a9}\)<3
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ âm nếu a và b khác dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b khác dấu thì a < 0 và b > 0.
Suy ra (a/b) < (0/b) = 0 tức là a/b âm.
Cho số hữu tỉ a/b khác 0. Chứng minh rằng: a/b là số hữu tỉ dương nếu a và b cùng dấu.
Xét số hữu tỉ a/b, có thể coi b > 0.
Nếu a, b cùng dấu thì a > 0 và b > 0.
Suy ra (a/b) > (0/b) = 0 tức là a/b dương.
Chứng minh rằng nếu a/b<c/d(b, d>0) thì: a/b<a+c/b+d<c/d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Có:
\(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
cho đa thức f(x)=ax^2+bx+c. Chứng minh rằng nếu a+b+c=0 thì x=1 là một nghiệm của đa thức f(x)
Với x-1 ta có:
\(f\left(x\right)=a+b+c=0\)
Vậy x 1 nghiệm của đa thức f(x)
Chứng minh rằng nếu ab=2cd thì abcd chia hết cho 67
abcd=100ab+ cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67=> abcd chia hết cho 67 (Dpcm)
abcd=100ab+cd=100.2.cd+cd=201.cd
Vì 201 chia hết cho 67
=> abcd chia hết cho 67
=> (ĐPCM)
Cho đa thức P(x)=m(x+2)2+n
Chứng minh rằng: Nếu m.n>0 thì đa thức p(x)vô nghiệm
m.n >0 thì m;n cùng dương hoặc cùng âm
ta có: (x+2)^2 >=0
xét trường hợp m;n cùng dương
m(x+2)^2 >=0 và n > 0=> m(x+2)^2 + n >0 => vô nghiệm
xét trường hợp m;n cùng âm
m(x+2)^2 <=0 và n<0 => m(x+2)^2 + n <=0 => vô nghiệm
Chứng minh rằng nếu 2 số a ; b là hai số nguyên khác 0 và a là bội của b.b là bội của a thì a=b hoặc a=-b
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
chứng minh rằng: Nếu (5a+3b) chia hết cho 13 thì (4a+31b) chia hết cho 13
Mình có cách hay hơn nè!
=> ( 5a+3b ) chia hết cho 13
=> 30a + 18b chia hết cho 13
Mà: 26a chia hết cho 13
13b chia hết cho 13
=> 30a - 26a + 18b + 13b chia hết cho 13
=> 4a +31b chia hết cho 13
=> đpcm
nếu x+y+zkhông âm , chứng minh rằng x^3+y^3+z^3 >= 3xyz
Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.