Giải pt \(6C^2_x-x^2+x-7=A^1_{x+2}\)
giải pt
\(C^1_x+6C^2_x+6C^3_x=9x^2-14x\)
ĐK :\(x\ge3;x\in N\)
áp dụng công thưc tổ hợp ta có
\(\frac{x!}{\left(x-1\right)!}+6\frac{x!}{\left(x-2\right)!2!}+6\frac{x!}{\left(x-3\right)!3!}=9x^2-14\Rightarrow x+3x\left(x-1\right)+x\left(x-1\right)\left(x-2\right)=9x^2-14x\)
suy ra \(x+3x^2-3x+\left(x^2-x\right)\left(x-2\right)-9x^2+14x=0\Rightarrow x\left(17-9x+x^2\right)=0\)
giải pt đối chiếu với đk của x ta tìm đc x
giải pt
\(C^1_x+C^2_x+C^3_x=\frac{7}{2}x\)
đk \(x\ge3;x\in N\)
ÁPdụng công thức tổ hợp ta có
\(\frac{x!}{\left(x-1\right)!}+\frac{x!}{\left(x-2\right)!2}+\frac{x!}{\left(x-3\right)!3!}=\frac{7}{2}x\Rightarrow x+\frac{x\left(x-1\right)}{2}+\frac{x\left(x-1\right)\left(x-2\right)}{6}=\frac{7}{2}x\)
suy ra \(x\left(1+\frac{x-1}{2}+\frac{\left(x-1\right)\left(x-2\right)}{6}-\frac{7}{2}\right)=0\)
giải pt đối chiếu với đk của x ta suy ra đc nghiệm của pt
Giải các pt sau:
a) (x-1)2-(x-1)(x+1)=3x-5
e) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1_{ }\right)}{7}-5\)
c) x3 -6x2+9x=0
a) ( x - 1 )2 - ( x - 1 ).( x + 1 ) = 3x - 5
\(\Leftrightarrow\) ( x - 1 ).( x - 1 ) - ( x - 1 ) .( x + 1 ) = 3x - 5
\(\Leftrightarrow\)( x - 1 ) .( x - 1 - x - 1 ) - 3x + 5 = 0
\(\Leftrightarrow\) ( x - 1 ) .( -2 ) - 3x + 5 = 0
\(\Leftrightarrow\) - 2x + 2 - 3x + 5 = 0
\(\Leftrightarrow\)- 5x + 7 = 0
\(\Leftrightarrow\) - 5x = - 7
\(\Leftrightarrow\) x = \(\frac{7}{5}\)
Vậy phương trình có nghiệm là : x = \(\frac{7}{5}\)
c) x3 - 6x2 + 9x = 0
\(\Leftrightarrow\)x.( x2 - 6x + 9 ) = 0
\(\Leftrightarrow\) x.( x - 3 )2 = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy phương trình có nghiệm là : x = 0 , x = 3
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
a. x/15=4/3
b. x: 4/3 =5/6
c. 7/2 - x =5/6
giải giúp mik nhanh vs ạ :-(
a).\(\dfrac{x}{15}\)=\(\dfrac{4}{3}\)\(\Leftrightarrow\)x.3=15.4\(\Leftrightarrow\)3x=60\(\Leftrightarrow\)x=20
b)x:\(\dfrac{4}{3}\)=\(\dfrac{5}{6}\)\(\Leftrightarrow\)\(\dfrac{3x}{4}=\dfrac{5}{6}\)\(\Leftrightarrow\)3x.6=4.5\(\Leftrightarrow\)18x=20\(\Leftrightarrow\)\(\dfrac{10}{9}\)
c)\(\dfrac{7}{2}\)-x=\(\dfrac{5}{6}\)\(\Leftrightarrow\)\(\dfrac{7}{2}-\dfrac{2x}{2}\)=\(\dfrac{5}{6}\)\(\Leftrightarrow\)\(\dfrac{7-2x}{2}\)=\(\dfrac{5}{6}\)\(\Leftrightarrow\)(7-2x).6=2.5\(\Leftrightarrow\)42-12x=10
\(\Leftrightarrow\)-12x=-32\(\Leftrightarrow\)x=\(\dfrac{8}{3}\)
1) Giải pt
a. x + 2 = 0
b. (x - 3) (2x + 8) = 0
2) Tìm đkxđ của pt : \(\dfrac{x}{x-5}\)- \(\dfrac{7}{2}\)= 0
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
1)
a) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy S = {\(-2\)}
b) \(\left(x-3\right)\left(2x+8\right)=0\)
\(\Leftrightarrow x-3=0\) hoặc \(2x+8=0\)
*) \(x-3=0\)
\(\Leftrightarrow x=3\)
*) \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
Vậy S = \(\left\{-4;3\right\}\)
2) ĐKXĐ:
\(x-5\ne0\Leftrightarrow x\ne5\)
1 1 1 1
1 _ X 1_ X 1_ X... X____
2 3 4 1963
Câu 7 Cho hau biểu thức:
A=x+2 phần y-1 và B =4x(x+5) phần y+2
a) y=2 giải pt ẩn x : A+3 =B
b) x=-3 giải pt ẩn y : A -B =13
a. Với y = 2 ta được:
\(A=\dfrac{x+2}{2-1}\)
\(B=\dfrac{4x\left(x+5\right)}{2+2}\)
Ta có pt:
\(\dfrac{x+2}{1}+3=\dfrac{4x\left(x+5\right)}{4}\)
\(\Leftrightarrow\dfrac{4\left(x+2\right)}{4}+\dfrac{12}{4}=\dfrac{4x^2+20x}{4}\)
\(\Leftrightarrow4x+8+12=4x^2+20x\)
\(\Leftrightarrow4x+20=4x^2+20x\)
\(\Leftrightarrow-4x^2-16x+20=0\)
\(\Leftrightarrow4x^2+16x-20=0\)
\(\Leftrightarrow\left(4x^2-4x\right)+\left(20x-20\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)+20\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x+20\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy..........
Dùng cách giải pt bậc 2 một ẩn, pt đẳng cấp 2 biến và hệ thức vi-et
Mọi người giải giúp vài bài này nhé
Giải nhanh nha, thanks nhiều
1. Tìm nghiệm nguyên của pt:7(x+y)=3(x2-xy+y2)
2. Tìm GTNN của A=\(\dfrac{2x^2-4x+5}{x^2+1}\)
3. Giải pt: x2+2x-3=\(\sqrt{-28x-7}\)
4. Giải pt: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\dfrac{4}{x}\)