Cho I = lim x → 0 2 x + 1 − 1 x và J = lim x → 1 x 2 + x − 2 x − 1 . Tính I+J
A. 3
B. 5
C. 4
D. 2
Bài 1 : tính giới hạn của
\(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(1-x\right)^2}\)
Bài 2: chứng minh rằng
\(\sqrt{x^2+px+q}=\left|x+\frac{p}{2}\right|+\varepsilon\left(x\right)\) với \(\lim\limits_{x\rightarrow+\infty}\varepsilon\left(x\right)=0\)
Bài 3: tìm a và b sao cho
\(\lim\limits_{x\rightarrow+\infty}\left[\sqrt{9x^2-4x+3}-\left(ax+b\right)\right]=0\)
Bài 1:
\(\lim\limits _{x\to 1}\frac{4x^6-5x^5+x}{(1-x)^2}=\lim\limits _{x\to 1}\frac{x(x-1)^2(4x^3+3x^2+2x+1)}{(1-x)^2}\)
\(=\lim\limits _{x\to 1}x(4x^3+3x^2+2x+1)=1(4.1^3+3.1^2+2.1+1)=10\)
Bài 3:
\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-(ax+b)]=0\)
\(\Rightarrow \lim\limits _{x\to +\infty}\frac{\sqrt{9x^2-4x+3}-(ax+b)}{x}=0\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\left(\sqrt{9-\frac{4}{x}+\frac{3}{x^2}}-a+\frac{b}{x}\right)=0\)
\(\Leftrightarrow a=3\)
Thay $a=3$ vào đk ban đầu:
\(\lim\limits _{x\to +\infty}[\sqrt{9x^2-4x+3}-3x-b]=0\)
\(\Leftrightarrow \lim\limits _{x\to +\infty} (\sqrt{9x^2-4x+3}-3x)=b\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4x+3}{\sqrt{9x^2-4x+3}+3x}=b\)
\(\Leftrightarrow \lim\limits _{x\to +\infty}\frac{-4+\frac{3}{x}}{\sqrt{9-\frac{4}{x}+\frac{3}{x}}+3}=b\)
\(\Leftrightarrow \frac{-4}{6}=b\Leftrightarrow b=-\frac{2}{3}\)
Bài 2:
\(\lim\limits _{x\to +\infty}\varepsilon(x)=\lim\limits _{x\to +\infty}[\sqrt{x^2+px+q}-|x+\frac{p}{2}|]=\lim\limits _{x\to +\infty}\frac{x^2+px+q-(x^2+px+\frac{p^2}{4})}{\sqrt{x^2+px+q}+|x+\frac{p}{2}|}\)
\(=\lim\limits _{x\to +\infty}\frac{q-\frac{p^2}{4}}{\sqrt{x^2+px+q}+|x+\frac{p}{2}|}=0\) do \(\sqrt{x^2+px+q}+|x+\frac{p}{2}|\to +\infty \)
\(\Rightarrow \sqrt{x^2+px+q}=|x+\frac{p}{2}|+\varepsilon (x)\) với \(\lim\limits _{x\to +\infty}\varepsilon (x)=0\)
Biết lim x -> +∞ f(x) = M ;lim x -> +∞ g(x) = 0 Chọn khẳng định đúng? A. Lim x -> +∞ f(x)/g(x)= +∞ B. Lim x -> +∞ = f(x)/g(x)= -∞ C. Lim x -> +∞ f(x)/g(x)=0 D. Limx -> +∞ [g(x).f(x)]=0
Chọn khẳng định đúng trong các khẳng định sau:
Câu 1:
A.Nếu lim|\(u_n\)|=+oo, thì lim\(u_n\)= +oo B. Nếu lim|\(u_n\)|=+oo, thì lim\(u_n\)=-oo
C.Nếu lim\(u_n\)=0, thì lim|\(u_n\)|=0 D.C.Nếu lim\(u_n\)=-a, thì lim|\(u_n\)|=a
Câu 2:
(I). f(x)=\(\frac{\sqrt{x+1}}{x-1}\) liên tục với mọi x≠1
(II). f(x)=sinx liên tục trên R
(III). f(x)=\(\frac{\left|x\right|}{x}\)liên tục tại x=1
A. Chỉ (I) đúng B. Chỉ (I) va (II) C, Chỉ (I) và (III) D. Chỉ (II) va (III)
Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)
Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục
(II) đúng do tính chất hàm sin
(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)
Vậy đáp án D đúng
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
a/ \(^{lim}_{x->0}\frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}\)
b/\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{1}{1-x^3}\right)\)
c/ \(^{lim}_{x->+\infty}\left(\sqrt[3]{2x-1}-\sqrt[3]{2x+1}\right)\)
d/ \(^{lim}_{x->-\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\)
e/\(^{lim}_{x->2}\left(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}\right)\)
f/ \(^{lim}_{x->0^{+-}}\left(\frac{2x}{\sqrt{4x^2+x^3}}\right)\)
Bạn tự hiểu là giới hạn tiến đến đâu nhé, làm biếng gõ đủ công thức
a. \(\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\frac{\frac{x}{\sqrt{1+x}+1}-\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}=\frac{1}{\sqrt{1+x}+1}-\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
b.
\(\frac{1-x^3-1+x}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1-x\right)\left(1+x\right)}{\left(1-x\right)^2\left(1+x+x^2\right)}=\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x+x^2\right)}=\frac{2}{0}=\infty\)
c.
\(=\frac{-2}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{\left(2x+1\right)^2}+\sqrt[3]{\left(2x-1\right)\left(2x+1\right)}}=\frac{-2}{\infty}=0\)
d.
\(=x\sqrt[3]{3-\frac{1}{x^3}}-x\sqrt{1+\frac{2}{x^2}}=x\left(\sqrt[3]{3-\frac{1}{x^3}}-\sqrt{1+\frac{2}{x^2}}\right)=-\infty\)
e.
\(=\frac{2x^2-8x+8}{\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-2\right)^2}{\left(x-1\right)\left(x-3\right)\left(x-2\right)^2}=\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{2}{-1}=-2\)
f.
\(=\frac{2x}{x\sqrt{4+x}}=\frac{2}{\sqrt{4+x}}=1\)
cho \(A=\lim\limits_{x\rightarrow+\infty}\dfrac{mx+2006}{x+\sqrt{x^2+2007}}\). tìm m để A=0
\(\lim\limits_{x\rightarrow+\infty}\dfrac{m+\dfrac{2006}{x}}{1+\sqrt{1+\dfrac{2007}{x^2}}}=\dfrac{m}{2}\)
\(A=0\Leftrightarrow\dfrac{m}{2}=0\Rightarrow m=0\)
Cho f(x) thỏa mãn : \(_{\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5}\)
Tính I= \(\lim\limits_{x\rightarrow-1}\dfrac{\left(4f\left(x\right)+3\right)\left(\sqrt{4f\left(x\right)^2+2f\left(x\right)+4}\right)-2}{x^2-1}\)
Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)
\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)
Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)
\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)
\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)
\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)
lim\(\dfrac{\sqrt{x^2+4}+x-2}{x^2-x}\)(x-->0)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+4}+x-2}{x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}+2\right)}{\sqrt{x^2+4}+2}+x}{x\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x^2}{\sqrt{x^2+4}+2}+x}{x\left(x-1\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt{x^2+4}+2}+1}{x-1}\)
\(=\dfrac{0+1}{-1}=-1\)
1) tính limx➞-∞( 4x5-3x2+1)
2) Tính lim(x➞4) \(\frac{1-x}{\left(x-4\right)^{^2}}\)
3)Cho hàm số f(x) = { (căn x) +1 nếu x≥0; 2x nếu x<0}
\(\lim\limits_{x\rightarrow-\infty}\left(4x^5-3x^2+1\right)=\lim\limits_{x\rightarrow-\infty}x^5\left(4-\frac{3}{x^3}+\frac{1}{x^5}\right)=-\infty.4=-\infty\)
\(\lim\limits_{x\rightarrow4}\frac{1-x}{\left(x-4\right)^2}=\frac{-3}{0}=-\infty\)
Câu tiếp theo đề thiếu, ko thấy yêu cầu gì hết
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\) và \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\). Dùng định nghĩa tính đạo hàm của các hàm số:
a) \(y = {e^x}\);
b) \(y = \ln x\).
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).