Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Trà
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 16:25

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

Free Fire
Xem chi tiết
Diệu Anh
20 tháng 2 2020 lúc 9:17

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

Khách vãng lai đã xóa
winx rồng thiên
20 tháng 2 2020 lúc 9:19

la 120

Khách vãng lai đã xóa
Ngọc Lan
20 tháng 2 2020 lúc 9:25

Bài 1 :

Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115

Ta có biểu thức : 

A=1-7+13-19+25-31+...+109-115

=(1-7)+(13-19)+(25-31)+...+(109-115)  (có tất cả 10 cặp)

=(-6)+(-6)+(-6)+...+(-6)

=(-6).10=-60

Vậy giá trị của biểu thức A là -60.

Chúc bạn học tốt!

#Huyền#

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2018 lúc 5:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2019 lúc 12:17

Chọn A.

Áp dụng hệ thức  f(m + n) = f( m) + f( n) + mn

Vậy f( 2017) = 2017 + 2016.2017/2 = 20352153

f( 2016) = 2016 + 2015 + 2016/2 = 2033136

Trần Minh Hoàng
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2021 lúc 18:28

\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))

\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)

\(=...=C_n^3+C_n^2=C_{n+1}^3\)

Do đó:

\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)

\(\Leftrightarrow n-1=9\Rightarrow n=10\)

\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)

\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)

Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)

Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)

Hoàng Tử Hà
11 tháng 4 2021 lúc 18:46

undefined

\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 12 2017 lúc 14:40

Đáp án A.

Quỳnh Anh
Xem chi tiết
Nguyên Khôi
11 tháng 11 2021 lúc 22:25

A

Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 23:50

Chọn A