Với n là số nguyên dương, biểu thức T = C n 0 + C n 1 + ... + C n n bằng
A. n 2
B. C 2 n n
C. n!
D. 2 n
Cho biểu thức P(n) = an+b.n+c, trong đó a,b,c là những số nguyên. Biết rằng với mọi giá trị nguyên dương n, giá trị của biểu thức P(n) luôn chia hết cho một số nguyên dương m cho trước. CMR b2 phải chia hết cho m
Tìm hệ số của x4 trong khai triển Newton của biểu thức \(\left(x^2+\dfrac{2}{x}\right)^n\) ( x khác 0) biết rằng n là số nguyên dương thỏa mản đẳng thức
\(2C^1_n+3C^2_n+4C^3_n+...+\left(n+1\right)C^n_n=111\)
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)
\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)
Đạo hàm 2 vế:
\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)
Thay \(x=1\)
\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)
\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)
\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)
\(\Rightarrow n=5\)
\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)
\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)
Bài 1 Cho A=1-7+13-19+25-31+....Biết A có 20 số hạng.Tính giá trị của biểu thức A
Bài 2 Cho biểu thức B=n+4 / n-3
a,Số nguyên n thỏa mãn điều gì để B là phân số?
b,Tìm tất cả các số nguyên dương n để B có giá trị là số nguyên
c,Tìm tất cả các số nguyên n để B có giá trị bé hơn 0
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
Bài 1 :
Số hạng thứ 20 của biểu thức A là : 1+(20-1).6=115
Ta có biểu thức :
A=1-7+13-19+25-31+...+109-115
=(1-7)+(13-19)+(25-31)+...+(109-115) (có tất cả 10 cặp)
=(-6)+(-6)+(-6)+...+(-6)
=(-6).10=-60
Vậy giá trị của biểu thức A là -60.
Chúc bạn học tốt!
#Huyền#
Với n là số nguyên dương, biểu thức T = C n 0 + C n 1 + . . . + C n n bằng
Cho f(1) = 1; f(m + n) = f(m) + f( n) + m.n với các số nguyên dương m; n .Khi đó giá trị của biểu thức T = log f 2017 - f 2016 - 17 2 là
A. 3
B. 4
C. 6
D. 9
Chọn A.
Áp dụng hệ thức f(m + n) = f( m) + f( n) + mn
Vậy f( 2017) = 2017 + 2016.2017/2 = 20352153
f( 2016) = 2016 + 2015 + 2016/2 = 2033136
Tìm hệ số của \(x^4\) trong khai triển của biểu thức P = \(\left(1-x-3x^3\right)^n\) thành đa thức, biết n là số nguyên dương thoả mãn \(2\left(C^2_2+C^2_3+...+C^2_n\right)=3A^2_{n+1}\).
\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))
\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)
\(=...=C_n^3+C_n^2=C_{n+1}^3\)
Do đó:
\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)
\(\Leftrightarrow n-1=9\Rightarrow n=10\)
\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)
\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)
\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)
Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)
Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)
\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)
Cho n là số nguyên dương thỏa mãn C n 2 - C n 1 = 44 Số hạng không chứa x trong khai triển của biểu thức ( x x + 1 x 4 ) n , với x > 0 bằng:
A.165.
B.485.
C.238.
D.525.
Xét biểu thức lôgic:(n>0) and (n mod 2 = 0). Khẳng định nào sau đây là đúng?
A. Kiểm tra xem n có là số nguyên dương chẵn không
B. Kiểm tra xem n có là một số dương không
C. Kiểm tra n có chia hết cho 2 không
D. Kiểm tra n là một số nguyên chẵn không
Xét biểu thức lôgic:(n>0) and (n mod 2 = 0). Khẳng định nào sau đây là đúng?
A. Kiểm tra xem n có là số nguyên dương chẵn không
B. Kiểm tra xem n có là một số dương không
C. Kiểm tra n có chia hết cho 2 không
D. Kiểm tra n là một số nguyên chẵn không