Cho PT ax^2 + bx + c = 0. Với a + b + mc = 0. CMR PT có n0 với m >1
Cho PT ax^2 + bx + c = 0. Với a + b + mc = 0. CMR PT có n0 với m >1
Cho PT ax^8 + bx^5 + c = 0. Với a + b + mc = 0 m thuộc R. CMR PT luôn có nghiệm với m>1
Cho PT ax^8 + bx^5 + c = 0. Với a + b + mc = 0 m thuộc R. CMR PT luôn có nghiệm với m>1
tìm a,b,c,d là số hữa tỉ sao cho x=căn 2 -1 là n0 của pt x^3+ax^2+bx+1=0
Cho pt ax^2 + bcx + b^3 + c^3 - 4abc = 0 (1) với a khác 0: vô nghiệm
Chứng minh rằng trong hai pt sau: ax^2 + bx + c = 0 (2) và ax^2 + cx + b = 0 (3), có một pt vô nghiệm và một pt có nghiệm
CMR với ab>=2(c+d) thì ít nhất 1 trong 2 PT sau có nghiệm x^2+ax+c=0,x^2+bx+d=0
Cho 3 số thực a,b,c thỏa mãn a= -2b - 5c. CMR PT \(ax^2+bx+c=0\) có ít nhất 1 no thuộc khoảng (0;1)
\(a=-2b-5c\Rightarrow a+2b=-5c\)
- Với \(c=0\Rightarrow a=-2b\Rightarrow-\dfrac{b}{a}=\dfrac{1}{2}\)
\(ax^2+bx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{b}{a}=\dfrac{1}{2}\in\left(0;1\right)\end{matrix}\right.\) (thỏa mãn)
- Với \(c\ne0\)
Hàm \(f\left(x\right)=ax^2+bx+c\) liên tục trên R
\(f\left(0\right)=c\) ;
\(f\left(\dfrac{1}{2}\right)=\dfrac{a}{4}+\dfrac{b}{2}+c=\dfrac{a+2b+4c}{4}=\dfrac{-5c+4c}{4}=-\dfrac{c}{4}\)
\(\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)=-\dfrac{c^2}{4}< 0;\forall c\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\Rightarrow f\left(x\right)\) có ít nhất 1 nghiệm thuộc \(\left(0;1\right)\) do \(\left(0;\dfrac{1}{2}\right)\subset\left(0;1\right)\)
cmr : cho pt ax2 + bx + c = 0 (a , c khác 0 ) có nghiệm x1 >0 và nghiệm còn lại âm
cmr : cho pt cx2 + bx + a =0 có nghiệm x2 >0 và x1 + x2 + x1x2 > = 3
Điều kiện a,b,c không cho làm sao suy được mấy cái đó mà bảo chứng minh b.
cho pt bậc 2 : ax^2+bx+c=0 có 2 nghiệm phân biệt thỏa mãn
X1+x2-2.X1x2=0
mx1x2-(x1+x2)=2m+1
a) tìm pt bậc hai trên với m là tham số
b)xác định m để phương trình bậc 2 trên có 2 nghiệm dương phân biệt
viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn