f) 𝑥3+27+(𝑥+3)(𝑥−9)
e) 𝑥3−3𝑥2−4𝑥+12f) 𝑥3+27+(𝑥+3)(𝑥−9)
e) 𝑥3−3𝑥2−4𝑥+12f) 𝑥3+27+(𝑥+3)(𝑥−9)
e) x3-3x2-4x+12
= x2(x-3)-4(x-3)
= (x2-4)(x-3)
Tìm x , biết rằng
a) 𝑥3 - 64𝑥 = 0
b) 𝑥3 - 4𝑥2 = -4𝑥
c)𝑥2 - 16 - (𝑥 - 4) = 0
d)(2𝑥 + 1)2 = (3 + 𝑥)
e)𝑥3 - 6𝑥2 + 12𝑥 - 8 = 0
f)𝑥3 - 7𝑥 - 6 = 0
a) x³ - 64x = 0
x(x² - 64) = 0
x(x - 8)(x + 8) = 0
x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0
*) x - 8 = 0
x = 8
*) x + 8 = 0
x = -8
Vậy x = -8; x = 0; x = 8
b) x³ - 4x² = -4x
x³ - 4x² + 4x = 0
x(x² - 4x + 4) = 0
x(x - 2)² = 0
x = 0 hoặc (x - 2)² = 0
*) (x - 2)² = 0
x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) x² - 16 - (x - 4) = 0
(x - 4)(x + 4) - (x - 4) = 0
(x - 4)(x + 4 - 1) = 0
(x - 4)(x + 3) = 0
x - 4 = 0 hoặc x + 3 = 0
*) x - 4 = 0
x = 4
*) x + 3 = 0
x = -3
Vậy x = -3; x = 4
d) (2x + 1)² = (3 + x)²
(2x + 1)² - (3 + x)² = 0
(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0
(x - 2)(3x + 4) = 0
x - 2 = 0 hoặc 3x + 4 = 0
*) x - 2 = 0
x = 2
*) 3x + 4 = 0
3x = -4
x = -4/3
Vậy x = -4/3; x = 2
e) x³ - 6x² + 12x - 8 = 0
(x - 2)³ = 0
x - 2 = 0
x = 2
f) x³ - 7x - 6 = 0
x³ + 2x² - 2x² - 4x - 3x - 6 = 0
(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0
x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0
(x + 2)(x² - 2x - 3) = 0
(x + 2)(x² + x - 3x - 3) = 0
(x + 2)[(x² + x) - (3x + 3)] = 0
(x + 2)[x(x + 1) - 3(x + 1)] = 0
(x + 2)(x + 1)(x - 3) = 0
x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x + 1 = 0
x = -1
*) x - 3 = 0
x = 3
Vậy x = -1; x = -1; x = 3
a,x\(^3\)-64=0
x\(^3\) =64
=>x=3
b,x\(^3\)-4x\(^2\)=-4x
x\(^3\)-4x\(^2\)+4x=0
x(x\(^2\)-4x+4)=0
x(x-2)\(^2\)=)
TH1:x=0
TH2:x-2=0
=>x=2
c,x\(^2\)-16-(x-4)=0
(x+4)(x-4)-(x-4)=0
(x-4)(x+4-1)=0
(x-4)(x+3)=0
TH1:x-4=0
=>x=4
TH2:x+3=0
=>x=-3
d,(2x+1).2=3+x
4x+2-3-x=0
3x-1=0
x=\(\dfrac{1}{3}\)
e,x\(^3\)-6x\(^2\)+12x-8=0
(x-2)\(^3\)=0
=>x-2=0
=>x=2
f,x\(^3\)-7x+6=0
x\(^3\)-x-6x+6=0
x(x\(^2\)-1)-6(x-1)=0
x(x+1)(x-1)-6(x-1)=0
(x-1)(x\(^2\)+x-6)=0
TH1:x-1=0
=>x=1
TH2:x\(^2\)+x-6=0
x\(^2\)+3x-2x-6=0
x(x+3)-2(x+3)=0
(x+3)(x-2)=0
=>x+3=0 =>x-2=0
+>x=-3 =>x=2
d,(2x+1)\(^2\)=(3+x)\(^2\)
4x\(^2\)+4x+1-9-6x-x\(^2\)=0
3x\(^2\)-2x-8=0
3x\(^2\)-6x+4x-8=0
3x(x-2)+4(x-2)=0
(3x+4)(x-2)=0
TH1:3x+4=0 TH2:x-2=0
=>x=\(\dfrac{-4}{3}\) =>x=2
a) 14𝑥3𝑦∶10𝑥2
b) (𝑥3−27)∶(3−𝑥)
c) 8𝑥3𝑦3𝑧∶6𝑥𝑦3
d) (𝑥2−9𝑦2+4𝑥+4)∶(𝑥+3𝑦+2)
a) 14𝑥3𝑦∶10𝑥2
b) (𝑥3−27)∶(3−𝑥)
c) 8𝑥3𝑦3𝑧∶6𝑥𝑦3
d) (𝑥2−9𝑦2+4𝑥+4)∶(𝑥+3𝑦+2)
a)14𝑥^3𝑦∶10𝑥^2=1,4𝑥𝑦
b)(𝑥^3-27):(3-𝑥)=(𝑥-3)(𝑥^2+3𝑥+9):(3-𝑥)=-(𝑥^2+3𝑥+9)=-𝑥^2-3𝑥-9
c)8𝑥^3𝑦^3𝑧∶6𝑥𝑦^3=4/3𝑥^2𝑧
d)(𝑥^2−9𝑦^2+4𝑥+4)∶(𝑥+3𝑦+2)=((𝑥^2+4𝑥+2^2)-(3𝑦)^2):(𝑥+3𝑦+2)=((𝑥+2)^2-(3𝑦)^2):(𝑥+3𝑦+2)=(𝑥+2-3𝑦)(𝑥+2+3𝑦):(𝑥+3𝑦+2)=𝑥+2-3𝑦
6) Làm tính chia
a) 14𝑥3𝑦∶10𝑥2
b) (𝑥3−27)∶(3−𝑥)
c) 8𝑥3𝑦3𝑧∶6𝑥𝑦3
d) (𝑥2−9𝑦2+4𝑥+4)∶(𝑥+3𝑦+2)
a) \(14x^3y:10x^2=\dfrac{7}{5}xy\)
b) \(\left(x^3-27\right):\left(3-x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right):\left(3-x\right)\)
\(=-\left(3-x\right)\left(x^2+3x+9\right):\left(3-x\right)\)
\(=-\left(x^2+3x+9\right)\)
\(=-x^2-3x-9\)
c) \(8x^3y^3z:6xy^3=\dfrac{4}{3}x^2z\)
d) \(\left(x^2-9y^2+4x+4\right):\left(x^2+3y+2\right)\)
\(=\left[\left(x+2\right)^2-\left(3y\right)^2\right]:\left(x^2+3y+2\right)\)
\(=\left(x+3y+2\right)\left(x-3y+2\right):\left(x^2+3y+2\right)\)
\(=x-3y+2\)
6) Làm tính chia
a) 14𝑥3𝑦∶10𝑥2
b) (𝑥3−27)∶(3−𝑥)
c) 8𝑥3𝑦3𝑧∶6𝑥𝑦3
d) (𝑥2−9𝑦2+4𝑥+4)∶(𝑥+3𝑦+2)
6) Làm tính chia
a) 14𝑥3𝑦∶10𝑥2
b) (𝑥3−27)∶(3−𝑥)
c) 8𝑥3𝑦3𝑧∶6𝑥𝑦3
d) (𝑥2−9𝑦2+4𝑥+4)∶(𝑥+3𝑦+2)
b) (𝑥+7)−25=13 c) 𝑥2=49 d) 2𝑥−49=5.32
c) 𝑥2=49
d) 2𝑥−49=5.32
e) 140:(𝑥−8)=7
f) 4.(𝑥−3)=72−13
g) 𝑥3=27
h) (2𝑥+1)3=125
\(b,\Leftrightarrow x+7=38\Leftrightarrow x=31\\ c,\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\\ d,\Leftrightarrow2x=160-49=111\Leftrightarrow x=\dfrac{111}{2}\\ e,\Leftrightarrow x-8=20\Leftrightarrow x=28\\ f,\Leftrightarrow x-3=\dfrac{59}{4}\Leftrightarrow x=\dfrac{71}{4}\\ g,\Leftrightarrow x=3\\ h,\Leftrightarrow2x+1=5\Leftrightarrow2x=4\Leftrightarrow x=2\)