Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 6 2018 lúc 5:41

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2017 lúc 13:39

Đáp án là D 

h 1 2 = 1 25    k h i    x = π 4 + k π 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 6 2017 lúc 18:27

Chọn C

Tập xác định của hàm số là ℝ .

Ta có: 

Vì trên khoảng  - 4 3 ; 0  hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = - 3 2 là điểm cực tiểu duy nhất thuộc  - 2 ; - 5 4  

Vậy hàm số đạt giá trị nhỏ nhất tại x =  - 3 2  trên đoạn  - 2 ; - 5 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2018 lúc 11:25

Chọn A

Hàm số y = f(x) thỏa mãn f'(x) < 0 ∀ x ∈ ( a ; b )  nên hàm số nghịch biến trên (a;b).

Do đó 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 12 2018 lúc 12:34

Chọn B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2019 lúc 7:34

HD: Giá trị nhỏ nhất của hàm số là f (0). Chọn B.

キエット
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 19:54

1. Không dịch được đề

2.

\(-1\le cos2x\le1\Rightarrow1\le y\le3\)

3.

a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

b.

\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)

\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)

\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)

4.

\(y=\left(tanx-1\right)^2+2\ge2\)

\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2018 lúc 4:38

Chọn A

Ta có: 

Với  nên f(x) đồng biến trên 

Với  nên f(x) nghich biến trên

Suy ra:  f(x) nghich biến trên  ℝ  nên  và  

Từ đây ,ta suy ra: 

=> chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2018 lúc 10:17

Đáp án C.

Ta có f 2 - f 1 = ∫ 1 2 f ' x d x ≥ ∫ 1 2 x + 1 x d x = x 2 2 + ln x 1 2 = 2 + ln 2 - 1 2 = 3 2 + ln 2 .  

Mặt khác f 1 = 1  suy ra f 2 ≥ f 1 + 3 2 + ln 2 = 1 + 3 2 + ln 2 = 5 2 + ln 2 .