Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THU THÚY Trần
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 22:53

\(b,\text{PT hoành độ giao điểm: }2x+1=x-1\Leftrightarrow x=-2\Leftrightarrow y=-3\Leftrightarrow A\left(-2;-3\right)\\ c,\text{Gọi góc đó là }\alpha\\ \text{Vì }1>0\Leftrightarrow\alpha< 90^0\\ \text{Hệ số góc }\left(d_2\right):1\Leftrightarrow\tan\alpha=1\\ \Leftrightarrow\alpha=45^0\)

Trần Công Thanh Tài
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 15:00

Đường tròn (C) tâm  I(1;2) bán kính \(R=\sqrt{5}\)

a.

\(\overrightarrow{OI}=\left(1;2\right)\Rightarrow\) đường thẳng OI nhận (2;-1) là 1 vtpt

Phương trình: \(2\left(x-0\right)-1\left(y-0\right)=0\Leftrightarrow2x-y=0\)

b.

Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)

Áp dụng định lý Pitago: 

\(IH=\sqrt{IA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{\sqrt{2}}{2}\)

Phương trình \(\Delta\) qua M có dạng: 

\(a\left(x-1\right)+b\left(y-3\right)=0\) với \(a^2+b^2>0\)

\(d\left(I;\Delta\right)=\dfrac{\left|a\left(1-1\right)+b\left(2-3\right)\right|}{\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left|\sqrt{2}b\right|=\sqrt{a^2+b^2}\Leftrightarrow2b^2=a^2+b^2\)

\(\Leftrightarrow a^2=b^2\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;1\right)\\\left(a;b\right)=\left(1;-1\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}1\left(x-1\right)+1\left(y-3\right)=0\\1\left(x-1\right)-1\left(y-3\right)=0\end{matrix}\right.\)

mynameisbro
Xem chi tiết
HT.Phong (9A5)
7 tháng 12 2023 lúc 7:48

a) 

b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:

\(y=0x-5\Rightarrow y=-5\) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:

\(-5=-x\)

\(\Rightarrow x=5\)

Tọa độ điểm A là (5;-5) 

Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:

\(-5=-\dfrac{1}{2}x\)

\(\Rightarrow\dfrac{1}{2}x=5\)

\(\Rightarrow x=5:\dfrac{1}{2}\)

\(\Rightarrow x=10\)

Tọa độ điểm B là (10;-5) 

c) Ta có: A(5;-5) và B(10;-5) 

Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\) 

Có A(5;-5) ⇒ HA = 5 (đvđd) 

Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có: 

\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd) 

 \(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\) 

Có B(10;-5) ⇒ HB = 10 (đvđd) 

Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:

\(OB^2=HB^2+OH^2\)

\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)

Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\) 

Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)

你混過 vulnerable 他 難...
Xem chi tiết
TU DANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2021 lúc 22:46

Chọn A

Thanhthanhhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 10:37

loading...

Lan Nhi Nguyễn
Xem chi tiết
Đặng Thị Hạnh
Xem chi tiết
Phạm Thảo Vân
9 tháng 4 2016 lúc 16:19

B A K H C E I D

Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.

Gọi I là giao điểm của AC và BD

Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)

Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)

Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)

Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE

- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)

Do I thuộc (C) nên có phương trình :

\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)

- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :

\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)

- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)

Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)

Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)

Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2018 lúc 15:59

Đáp án A

Ta có I ( 1 ; - 2 ) , I ' - 2 ; 1 ⇒ v → = I I ' → = - 3 ; 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 6 2019 lúc 18:14