chứng tỏ rằng 7^n+4-7^n chia hết cho 30
giải rõ ràng nhé
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta đều có :
a, n . ( n + 2 ) ( n + 8 ) chia hết cho 3
b, n . ( n + 4 ) ( 2n + 1 ) chia hết cho 6
* Ai làm hết và trình bày rõ ràng tặng 3 like nha *
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
bài1 chứng tỏ rằng tổng của 3 só tự nhiên liên tiếp chia hết cho 3 và tổng cuả 4 số tự nhiên liên tiếp thì không chia hết cho 4
bài 2 chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6 ) thì chia hết cho 2
Các bạn giải rõ ràng cả hai bì giúp mình với nhé.Mình cảm ơn các bạn nhiều
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
CHỨNG TỎ RẰNG
A=2 + 2^2 + 2^3 + 2^4+.............+2^90 CHIA HẾT CHO 21
TRÌNH BÀY RÕ RÀNG HỘ MK NHÉ NHANH MK CẦN KHÁ GẤP
Có 90 số hạng nên ghép từng cặp 2 số ta có
A= (2+2^2)+(2^3+2^4)...+(2^89+2^90)
= 2x(1+2)+2^3(1+2)+...+2^89(1+2)
= 2.3+2^2.3+...+2^89.3 chia hết cho 3
+,ghép từng cặp 3 số
A= (2+2^2+2^3)+....+(2^88+2^89+2^90)
= 2x(1+2+2^2)+....+2^88(1+2+2^2)
= 2.7+....+2^88.7 chia hết cho 7
mà (3;7)=1 => A chia hết cho 3x7=21
Vậy A chia hết cho 21.
chứng tỏ rằng 7^n+4-7^n chia hết cho 30
\(7^{n+4}-7^n=7^n.\left(7^4-1\right)=7^n.\left(2401-1\right)=7^n.2400=7^n.80.30\text{ chia hết cho 30}\)
=> \(7^{n+4}-7^n\text{ chia hết cho 30}\left(đpcm\right)\)
Chứng tỏ rằng (7^n+1)(7^n+2)(7^n+3) chia hết cho 4 với n thuộc N
Xét n lẻ => 7n chia 4 dư 3.
=> 7n + 1 chia hết cho 4.
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N lẻ) (1)
Xét n chẵn => 7n chia 4 dư 1.
=> 7n + 3 chia hết cho 4.
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 (n thuộc N chẵn) (2)
Từ (1) và (2)
=> (7n + 1)(7n + 2)(7n + 3) chia hết cho 4 với mọi n thuộc N (đpcm)
Chứng tỏ rằng 109 + 108 + 107 chia hết cho 555 .
Phải trình bày rõ ràng , đúng & nhanh mới được like nha ! ^ - ^
10^9+10^8+10^7=10^7(10^2+10+1)=10^7.111=10^6.1110=10^6.2.555 chia hết cho 555
Tìm n thuộc N để
a) n2+1 chia hết cho n-1
b) 3n+2 chia hết cho n-1
c) n2+2n+7 chia het cho n+2
d)6n+4 chia hết cho 2n+1
lời giải rõ ràng nhé
nhanh nhat 2 like
nhanh nhì 1 like
1/a)chứng minh rằng: 7^6 +7^5-7^4 chia hết cho 55
làm ơn đấy giải giúp mik đi!!!!mik đg cần gấp lắm......ai giải cụ thể đúng rõ ràng mỗi ngày mik đều tick cho hết....
1)a) 7^6 +7^5-7^4 = 7^4.7^2+7^4.7-7^4.1 = 7^4.(7^2+7-1) = 7^4.(49+7-1) = 7^4.55
Vì 55 chia hết cho 55 nên 7^4.55 chia hết cho 55
Do đó 7^6 + 7^5 - 7^4 chia hết cho 55 (đpcm)
Ta có: 76 + 75 - 74
= 74.(72 + 7 - 1)
= 74.(49 + 7 - 1)
= 74. 55
Vì 55 chia hết cho 55 => 74 . 55 chia hết cho 55
Vậy 76 + 75 - 74 chia hết cho 55
các bn đợi mik giải ra rồi vs cx thi về r thì mới giải thì còn ích gì nữa....