Cho số phức z thỏa z + 2 + i z - = 3 + 5 i .Tính mô đun của số phức z -
A. z = 13
B. z = 5
C. |z|=13
D. |z|=5
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn z + ( 2 + i ) z ¯ = 3 + 5 i . Tính môđun của số phức z.
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + z ) z ¯ .
Cho số phức z thỏa mãn | z -3 - 4i| = 5 .Tìm |z| để biểu thức: P = |z + 2|2 - |z – i|2 đạt giá trị lớn nhất?
B. 10
Chọn A.
Gọi M( x; y) là điểm biểu diễn của số phức z trên mặt phẳng Oxy.
Biểu diễn hình học của P là đường thẳng và P = 4x + 2y + 3.
Áp dụng bất đẳng thức Bunyakovsky ta có:
P = 4x + 2y + 3 = 4(x – 3) + 2(y – 4) + 23
Vậy MaxP = 33
Cho số phức z thỏa mãn ( 1+ i) z + 2z = 2. Tính mô-đun của số phức w = z + 2/5 - 4/5i.
A. 1.
B. 2.
C. 2
D. 3
Chọn C.
Đặt z = a+ bi.
Theo đề ra ta có: ( 3 + i) z = 2
Hay ( 3 + i)( a + bi) = 2
Suy ra: 3a - b + ( 3b + a) i = 2
nên z = 3/5 - 1/5i.
Khi đó w = 3/5 - 1/5i + 2/5 - 4/5 i = 1 - i.
Vậy
Biết số phức z thỏa mãn đồng thời hai điều kiện z - 3 - 4 i = 5 và biểu thức M = | z + 2 | 2 - | z - i | 2 đạt giá tri lớn nhất. Tính môđun của số phức z+i
Cho số phức z thỏa mãn (1+z)(1+i)-5+i=0. Số phức w=1+z bằng
A. -1+3i.
B. 1-3i.
C. -2+3i.
D. 2-3i
Cho số phức z thỏa mãn |z| = 5 và số phức w = ( 1 + i ) z Tìm |w|
A. 10
B. 2 + 5
C. 5
D. 2 5
Đáp án A
Phương pháp: Cho z1, z2 là hai số phức bất kì, khi đó | z1.z2 | = |z1|.|z2|
Cách giải: Ta có:
Cho số phức z thỏa mãn |z - 3 - 4i| = 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z + 2 | 2 - | z - i | 2 . Tính môđun của số phức w = M + mi ?
A. |w| = 2315
B. |w| = 1258
C. |w| = 3 137
D. |w| = 2 309
Đáp án B.
Đặt suy ra tập hợp các điểm M(z) = (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5
Ta có
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Do đó