Có bao nhiêu giá trị thực của tham số m để phương trình 9 x 2 − 2.3 x 2 + 1 + 3 m − 1 = 0 có đúng 3 nghiệm thực phân biệt
A. 0
B. 1
C. 2
D. Vô số
Có bao nhiêu giá trị nguyên thuộc khoảng (-9; 9) của tham số m để bất phương trình 3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x
có nghiệm thực?
A. 6
B. 7
C. 10
D. 11
Đáp án B.
Phương pháp:
Bất phương trình m ≥ f x , x ∈ D có nghiệm khi và chỉ khi m ≥ M i n D f x .
Cách giải:
ĐKXĐ: 0 < x < 1
3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x ⇔ m x − x 2 − 1 − x 1 − x ≥ x x
⇔ m ≥ x x + 1 − x 1 − x x − x 2 , x ∈ 0 ; 1
Để bất phương trình đã cho có nghiệm thực thì m ≥ M i n 0 ; 1 f x , f x = x x + 1 − x 1 − x x − x 2
Xét
f x = x x + 1 − x 1 − x x − x 2 = x + 1 − x 1 − x x − 1 x x − 1 , x ∈ 0 ; 1
Đặt t = x + 1 − x , t ∈ 1 ; 2
Khi đó,
f x = x + 1 − x 1 − x 1 − x x 1 − x = t 1 − t 2 − 1 2 t 2 − 1 2 = t 3 − t 2 t 2 − 1 = 3 t − t 3 t 2 − 1 = g t
g ' t = − t 4 − 3 t 2 − 1 2 < 0 , ∀ t ∈ 1 ; 2
⇒ g t min = g 2 = 3 2 − 2 2 2 − 1 = 2 ⇒ M i n 0 ; 1 f x = 2 ⇒ m ≥ 2
Mà
m ∈ − 9 ; 9 ⇒ m ∈ 2 ; 3 ; 4 ; ... ; 8 ⇒
Có 7 giá trị thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m để phương trình 6 + x - 2 - x - 3 + x - 6 - x - 5 - m = 0 có nghiệm thực
A. 0
B. 2
C. 3
D. 1
Cho phương trình \(x^2-2x-2\left|x-m\right|+1=0\) Có bao nhiêu giá trị của tham số m để có 3 nghiệm thực phân biệt
Có bao nhiêu giá trị nguyên của tham số m để phương trình 1 + x + 8 - x + 8 + 7 x - 7 x 2 = m có nghiệm thực?
A. 13.
B. 12.
C. 6.
D. 7.
Có bao nhiêu giá trị nguyên của tham số m để phương trình 1 + 2 cos x + 1 + 2 sin x = m 2 có nghiệm thực?
A.3
B.5
C.4
D.2
Có bao nhiêu giá trị nguyên của tham số m để phương trình m + 3 m + 3 sin x 3 3 = sin x có nghiệm thực ?
A. 5
B. 7
C. 3
D. 2
Đáp án A
*Phương trình m + 3 m + 3 sin x 3 3 = sin x ⇔ m + 3 m + 3 sin x 3 = sin 3 x
⇔ ( m + 3 sin x ) + 3 m + 3 sin x 3 = sin 3 x + 3 sin x ( 1 )
* Xét hàm số f ( t ) = t 3 + 3 t trên ℝ . Ta có f ' ( t ) = 3 t 2 + 3 > 0 ∀ t ∈ ℝ nên hàm số f(t) đồng biến trên ℝ .
Suy ra (1) f 3 + 3 sin x 3 f ( sin x ) ⇔ 3 + 3 sin x 3 = sin x
Đặt sin x = t, t ∈ [ - 1 ; 1 ] Phương trình trở thành t 3 - 3 t = m
* Xét hàm số g(t) trên t ∈ - 1 ; 1 Ta có g ' ( t ) = 3 t 2 - 3 ≤ 0 , ∀ t ∈ [ - 1 ; 1 ] và g ' ( t ) = 0 ⇔ t = ± 1 Suy ra hàm số g(t) nghịch biến trên [-1;1]
* Để phương trình có nghiệm đã cho có nghiệm thực ⇔ Phương trình t 3 - 3 t = m có nghiệm trên [-1;1]
m i n [ - 1 ; 1 ] g ( t ) ≤ m ≤ m a x [ - 1 ; 1 ] g ( t ) ⇔ g ( 1 ) ≤ m ≤ g ( - 1 ) ⇔ - 2 ≤ m ≤ 2
Vậy có 5 giá trị nguyên của m thỏa mãn là m ∈ - 2 ; - 1 ; 0 ; 1 ; 2
Có bao nhiêu giá trị nguyên của tham số m để phương trình
m + 3 . m + cos x 3 3 = cos x có nghiệm thực?
A. 2.
B. 7.
C. 5.
D. 3.
Có bao nhiêu giá trị thực của tham số m để phương trình 9 x + 9 = m 3 x c o s π x có duy nhất 1 nghiệm thực
A. 1
B. 0
C. 2
D. Vô số
Có bao nhiêu giá trị thực của tham số m để phương trình 9 x + 9 = m 3 x cosπ x có duy nhất 1 nghiệm thực.
A. 1
B. 0
C. 2
D. Vô số
Chọn A.
Phương pháp: Đặt ẩn phụ không hoàn toàn.
Cách giải: Ta có:
Điều kiện cần để phương trình đã cho có nghiệm duy nhất là (*) phải có đúng nghiệm dương
Có bao nhiêu giá trị thực của tham số m để phương trình 9 x + 9 = m . 3 x . cosπ x có duy nhất 1 nghiệm thực
A. 1
B. 0
C. 2
D. vô số