Cho hàm số f(x) có đồ thị (C) như hình vẽ. Tọa độ điểm cực tiểu của (C) là
A. (0;-2)
B. (0;-4)
C. (1;0)
D. (-2;0)
Cho hàm số y = f x = ax 3 + bx 2 + cx + d có đồ thị (C), đồ thị y = f '(x) như hình vẽ bên. Biết đồ thị hàm số y = f(x) có điểm cực tiểu có tung độ bằng 2 3 . Tính 3 a − b + 5 c + 3 d bằng?
A. -16
B. -12
C. 9
D. 10
Đáp án B
Nhìn vào đồ thị của hàm số y = f '(x) ta nhận thấy đồ thị hàm số đi qua các điểm (1;0), (3;0), (2;1) nên có hệ phương trình sau:
Nên đồ thị hàm số y = f(x) có điểm cực tiểu có tung độ bằng 2 3
Hàm số y=f(x) có đồ thị như hình vẽ bên. Điểm cực tiểu của đồ thị hàm số y=f(x) là
A. 1
B. (1;-2)
C. -1
D. (-1;2)
Điểm cực tiểu của đồ thị hàm số là (1;−2).
Chọn đáp án B.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực tiểu của hàm số là
A. x = 0
B. y = 0
C. y = -2
D. x = -2
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Điểm cực tiểu của hàm số là
A. x=0
B. y=0
C. y=-2
D. x=-2
Đáp án A
Dựa vào đồ thị hàm số ta có bảng biến thiên:
Điểm cực tiểu của hàm số là x=0
Cho hàm số y =f(x) có đạo hàm f’(x) trên khoảng (-∞;+∞). Đồ thị của hàm số y =f(x) như hình vẽ. Đồ thị của hàm số y = f x 2 có bao nhiêu điểm cực đại, điểm cực tiểu?
A. 1 điểm cực đại, 3 điểm cực tiểu.
B. 2 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
D. 2 điểm cực tiểu, 3 điểm cực đại.
Cho hàm số y= f(x) có đạo hàm và đồ thị hàm số y= f’(x) như hình vẽ.
Số điểm cực tiểu của hàm số là
A.1
B . 2
C. 3
D. 4
Chọn B
Ta có: .
Khi đó .
Vẽ đồ thị hàm số trên mặt phẳng toạ độ đã có đồ thị y= f’(x).
Dựa vào hình vẽ trên ta thấy phương trình có ba nghiệm đơn:
x1< x2< x3
Ta lập được bẳng xét dấu của g’(x) :
Dựa vào bảng xét dấu ta thấy dấu của thay đổi từ sang hai lần. Vậy có hai điểm cực tiểu.
Cho hàm số y = f(x) có đạo hàm f'(x) trên khoảng ( - ∞ ; + ∞ ) . Đồ thị hàm số y = f(x) như hình vẽ
Đồ thị của hàm số y = ( f ( x ) ) 2 có bao nhiêu điểm cực đại, cực tiểu?
A. 2 điểm cực đại, 3 điểm cực tiểu.
B. 1 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
A. 3 điểm cực đại, 2 điểm cực tiểu.
Cho hàm số y=f(x) liên tục trên R và có đồ thị là đường cong như hình vẽ bên. Tìm điểm cực tiểu của đồ thị hàm số y=f(x).
A. y=-2
B. x=0
C. M(0;-2)
D. N(2;2)
Đáp án C
Nhìn vào đồ thị thì điểm cực tiểu là điểm M(0;-2)
Cho hàm số y = f ( x ) = ax 3 + bx 2 + cx + d có hai cực trị x 1 , x 2 thỏa - 2 < x 1 < 0 < x 2 < 2 và có đồ thị như hình vẽ.
Số điểm cực tiểu của hàm số là
A. 3.
B. 5.
C. 7.
D. 4.
Suy ra số điểm cực tiểu của hàm số là 4