lim x → 2018 x 2 − 4 2018 x − 2 2018 bằng:
A. + ∞ .
B. 2
C. 2 2018 .
D. 2 2019 .
Tính \(x\underrightarrow{lim}1\) \(\frac{C^0_{2018}+C^2_{2018}x^2+...+C^{2018}_{2018}x^{2018}-2^{2017}}{x-1}\)
Xét 2 khai triển:
\(\left(x+1\right)^{2018}=C_{2018}^0+C_{2018}^1x+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\)
\(\left(x-1\right)^{2018}=C_{2018}^0-C_{2018}^1x+C_{2018}^2x^2-...+C_{2018}^{2018}x^{2018}\)
Cộng vế với vế:
\(\left(x+1\right)^{2018}+\left(x-1\right)^{2018}=2\left(C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\right)\)
\(\Leftrightarrow C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}=\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}=\frac{\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}-2^{2017}}{x-1}=\lim\limits_{x\rightarrow1}\frac{1009\left(x+1\right)^{2017}+1009\left(x-1\right)^{2017}}{1}=1009.2^{2017}\)
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-a\sqrt{1+\dfrac{1}{x^2}}+\dfrac{2017}{x}}{1+\dfrac{2018}{x}}=-a\Rightarrow a=-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{bx+1}{\sqrt{x^2+bx+1}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{b+\dfrac{1}{x}}{\sqrt{1+\dfrac{b}{x}+\dfrac{1}{x^2}}+1}=\dfrac{b}{2}=2\Rightarrow b=4\)
\(\Rightarrow P=2\)
Tính \(\lim\limits_{x\rightarrow1}=\frac{\left(x^2+x+1\right)^{2018}+\left(x+2\right)^{2018}-2.3^{2018}}{\left(x-1\right)\left(x+2017\right)}\)
Lời giải:
\(\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\frac{(x^2+x+1)^{2018}-3^{2018}+(x+2)^{2018}-3^{2018}}{(x-1)(x+2017)}\)
\(=\frac{(x^2+x-2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x-1)[(x+2)^{2017}+...+3^{2017}]}{(x-1)(x+2017)}\)
\(=\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)
Do đó:
\(\lim_{x\to 1}\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\lim_{x\to 1}\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)
\(=\frac{3\underbrace{(3^{2017}+3^{2017}+...+3^{2017})}_{2018}+\underbrace{3^{2017}+...+3^{2017}}_{2018}}{1+2017}\)
\(=\frac{3.2018.3^{2017}+2018.3^{2017}}{2018}=3^{2018}+3^{2017}=3^{2017}.4\)
Tính các giới hạn sau:
a) $\underset{x\to 2}{\mathop{\lim }}\,\left( \sqrt{x+2}+2018 \right)$.
b) $\underset{n\to +\infty }{\mathop{\lim }}\,\dfrac{{{3.4}^{n}}+{{2}^{n}}}{{{5.4}^{n}}+{{3}^{n}}}$.
c) $\underset{x\to -3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}+4x+3}{{{x}^{2}}-9}$.
a) \(lim_{x\rightarrow2}\left(\sqrt{x+2}+2018\right)=lim_{x\rightarrow2}\left(\sqrt{2+2}+2018\right)=2020\)
b)\(lim_{x\rightarrow+\infty}\dfrac{3.4^n+2^n}{5.4^n+3^n}=lim_{x\rightarrow+\infty}\dfrac{3+\left(\dfrac{2}{4}\right)^n}{5+\left(\dfrac{3}{4}\right)^n}=\dfrac{3+0}{5+0}=\dfrac{3}{5}\)
c) \(lim_{x\rightarrow-3}\dfrac{x^2+4x+3}{x^2-9}=lim_{x\rightarrow-3}\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=lim_{x\rightarrow-3}\dfrac{x+1}{x-3}=\dfrac{-3+1}{-3-3}=\dfrac{1}{3}\)
a) limx→2(√x+2+2018)=√2+2+2018=2020limx→2(x+2+2018)=2+2+2018=2020.
b) limn→+∞3.4n+2n5.4n+3n=limn→+∞3+2n4n5+3n4n=limn→+∞3+(12)n5+(34)n=35limn→+∞3.4n+2n5.4n+3n=limn→+∞3+2n4n5+3n4n=limn→+∞3+(12)n5+(34)n=35.
limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13.
Limx->1 (\(\frac{2017}{1-x^{2017}}-\frac{2018}{1-x^{2018}}\) )
lim\(\frac{\sqrt[2018]{11x+1}-1}{x}\) x->0
Ta thấy nó có dạng \(\frac{0}{0}\)
Áp dụng Lopitan ta được
\(lim\frac{\sqrt[2018]{11x+1}-1}{x}=lim\frac{11}{2018\sqrt[2018]{\left(11x+1\right)^{2017}}}=\frac{11}{2018}\)
tìm gioi han \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+1}.\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}}{x}\)
Câu này thiếu -1 trên tử rồi :v
Tham khảo câu trả lời của mod Lâm Đọc bị lú rồi :D
lim\(\dfrac{\sqrt{1.2x+1}.\sqrt[3]{2.3x+a}....\sqrt[2018]{2017.2018x+1}}{x}\) khi x tiến 0
Cái \(\sqrt[3]{2.3x+a}\) đúng hay sai đấy bạn? Bạn có gõ nhầm 1 thành a ko?
Sửa đề:
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
Do gõ \(x\rightarrow0\) dưới lim rất tốn thời gian nên mình bỏ qua, bạn tự hiểu tất cả các giới hạn bên dưới đều là \(x\rightarrow0\)
Trước hết ta dùng L'Hopital để tính giới hạn dạng tổng quát sau:
\(lim\dfrac{\sqrt[n]{\left(n-1\right)n.x+1}-1}{x}=lim\dfrac{\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}}-1}{x}\)
\(=lim\dfrac{\dfrac{1}{n}\left[\left(n-1\right)nx+1\right]^{\dfrac{1}{n}-1}.\left(n-1\right)n}{x}=n-1\)
Và \(\sqrt{2.3x+1}...\sqrt[n]{\left(n-1\right)n.x+1}=1\) khi \(x=1\)
\(\Rightarrow lim\dfrac{\sqrt[k]{\left(k-1\right)kx+1}...\sqrt[m]{\left(m-1\right)mx+1}\left(\sqrt[n]{\left(n-1\right)nx+1}-1\right)}{x}=n-1\)
với mọi \(m;k\) (vì đằng nào cái cụm nhân đằng trước cũng ra 1, ko ảnh hưởng)
Áp dụng vào bài toán:
\(lim\dfrac{\sqrt{1.2x+1}\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=lim\dfrac{\sqrt[3]{2.3x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt{2.3x+1}-1\right)}{x}+\) \(lim\dfrac{\sqrt[4]{3.4x+1}...\sqrt[2018]{2017.2018x+1}\left(\sqrt[3]{2.3x+1}-1\right)}{x}+...\)
\(+lim\dfrac{\sqrt[2018]{2017.2018x+1}-1}{x}\)
\(=2+3+...2017=\dfrac{2016.2019}{2}=2035152\)
cho hàm số f(x)=2x2+x-3
tìm \(\lim\limits_{x\rightarrow+\infty}\)\(\dfrac{\sqrt{f\left(x\right)}+\sqrt{f\left(4x\right)}+\sqrt{\left(4^2x\right)}+...+\sqrt{f\left(4^{2018}x\right)}}{\sqrt{f\left(x\right)}+\sqrt{f\left(2x\right)}+\sqrt{\left(2^2x\right)}+...+\sqrt{f\left(2^{2018}x\right)}}\)=\(\dfrac{a^{2019}+b}{c}\) với a,b,c là ba số nguyên dương và b<2019.Tính S=a+b-c
Cho a, b là 2 số dương thỏa mãn giới hạn \(I=\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)\) hữu hạn. Tính I
\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)
Còn tuỳ vào độ lớn của a và b