Có bao nhiêu tiếp tuyến của ( C ) : y = x 3 - 3 x + 1 đi qua M(0;1)
Bài 1: Cho \(y=\dfrac{1}{3}x^3-2x^2+3x\). Viết phương trình tiếp tuyến của (C) đi qua A(\(\dfrac{4}{9};\dfrac{4}{3}\))
Bài 2: Cho \(y=\dfrac{1}{2}x^4-3x^2+\dfrac{3}{2}\) (C). Viết phương trình tiếp tuyến của (C) đi qua A(\(0;\dfrac{3}{2}\))
Cho hàm số y = x 2 - 2 x + 3 có đồ thị (C) và điểm A(1;a). Có bao nhiêu giá trị nguyên của a để có đúng hai tiếp tuyến của (C) đi qua a?
A. 3
B. 2
C. 1
D. 4
Cho hàm số y=\(2x^4-4x^2-1\) có đồ thị là (C). Viết phương trình tiếp tuyến của (C), biết
a) tiếp tuyến vuông góc với đường thẳng \(x-48y+1=0\)
b) tiếp tuyến đi qua \(A\left(1;-3\right)\)
c) tiếp tuyến tiếp xúc voi (C) tại 2 điểm phân biệt
\(y'=8x^3-8x\)
a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)
\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)
\(y'\left(-2\right)=47\)
Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)
b. Gọi tiếp điểm có hoành độ \(x_0\)
Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)
Do tiếp tuyến qua A:
\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)
\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)
\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)
Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được
cho (C): \(y=\dfrac{x}{x-1}\), hỏi (C) có bao nhiêu tiếp tuyến
a/ Tạo với 2 trục tọa độ một tam giác vuông cân, tức là hệ số góc của tiếp tuyến bằng \(\pm1\). Hay \(f'\left(x\right)=\pm1\)
\(f'\left(x\right)=\dfrac{x-1-x}{\left(x-1\right)^2}=-\dfrac{1}{\left(x-1\right)^2}\)
\(\left(x-1\right)^2>0\forall x\ne1\Rightarrow f'\left(x\right)=-1\)
\(\Leftrightarrow x-1=\pm1\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-1\left(x-2\right)+2=4-x\\y=-1\left(x-0\right)+0=-x\end{matrix}\right.\)
b/ \(y=k\left(x-1\right)+3\)
\(\left\{{}\begin{matrix}k\left(x-1\right)+3=\dfrac{x}{x-1}\left(1\right)\\k=-\dfrac{1}{\left(x-1\right)^2}\left(2\right)\end{matrix}\right.\)
The (2) vo (1) \(\Rightarrow-\dfrac{x-1}{\left(x-1\right)^2}+3=\dfrac{x}{x-1}\Leftrightarrow\dfrac{-1}{x-1}+3=\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{x+1}{x-1}=3\Leftrightarrow x+1=3x-3\Leftrightarrow x=2\)
\(\Rightarrow k=-\dfrac{1}{\left(2-1\right)^2}=-1;y=2\)
\(\Rightarrow y=-1\left(x-2\right)+2=4-x\)
P/s: Check lại dùm toi nha
Trong không gian Oxyz, cho mặt cầu (S): \(x^2 + y^2 + (z+\sqrt(2))^2 = 3\)
Có tất cả bao nhiêu điểm A(a; b; c) (a, b, c là các số nguyên) thuộc mặt phẳng (Oxy) sao cho có ít nhất hai tiếp tuyến của (S) đi qua A và hai tiếp tuyến đó vuông góc với nhau?
Cho hàm số y=f(x) có đạo hàm liên tục trên tập R/ 2 và có đồ thị hàm số y=f’(x) như hình vẽ. Biết f 1 ≠ 10 f(3)=4 . Có bao nhiêu tiếp tuyến của đồ thị hàm số mà tiếp tuyến đó song song với đường thẳng 3x+y-13
A. 2
B. 1
C. 0.
D. 3
y = \(\dfrac{1}{8}x^4\) - \(\dfrac{7}{4}x^2\) (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại 2 điểm phân biệt M(x1;y1), N(x2;y2) (M, N khác A) thỏa mãn:
y1 - y2 = 3(x1 - x2)
\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)
Chỉ cần để ý 1 lý thuyết:
Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)
Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)
\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)
Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận
Có bao nhiêu tiếp tuyến của đồ thị hàm số y = x3 - 3x2 + 2 đi qua điểm A(3; 2) ?
A. 3.
B. 0.
C. 1.
D. 2.
Chọn: D
Giả sử tiếp điểm là M x 0 ; y 0
Phương trình tiếp tuyến d của đồ thị hàm số y = x3 - 3x2 + 2 tại M x 0 ; y 0 là
Do d đi qua điểm A(3; 2) nên
Vậy, có 2 tiếp tuyến của đồ htij hàm số y = x3 - 3x2 + 2 đi qua điểm A(3; 2)
Cho hàm số y = - x + 2 x - 1 có đồ thị (C) và điểm A( a; 1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến từ C đi qua A. Hỏi trong tập S có bao nhiêu giá trị nguyên
A. 1.
B. 0.
C. 3.
D. 4
+ Phương trình đường thẳng d đi qua A và có hệ số góc k là: y= k( x-a) +1
+ Phương trình hoành độ giao điểm của d và (C) :
+ Với k= 0, ta có d: y= 1 là tiệm cận ngang đồ thị hàm số nên không thể tiếp xúc được.
Với k≠0 , d và (C) tiếp xúc nhau khi và chỉ khi (1) có nghiệm kép
Coi đây là phương trình bậc 2 ẩn k tham số a
+ Để qua A( a; 1) vẽ được đúng tiếp tuyến thì phương trình có đúng một nghiệm k≠ 0.
*Xét 1-a= 0 hay a=1, ta có 4k+ k= 0 hạy k= -1 thỏa.
*Có f(0) = 4≠0 nên loại đi trường hợp có hai nghiệm trong đó có một nghiệm là .
*Còn lại là trường hợp ∆x= 0 có nghiệm kép khi
Vậy có 2 giá trị của a thỏa mãn đầu bài là a= 1 hoặc a= 3/2.
Chọn A.