Cho hình chóp S.ABCD có SA ^ (ABC), AB = 1, AC = 2 và B A C ^ = 60 ∘ .
Gọi M, N lần lượt là hình chiếu của A trên SB, SC. Tính bán kính R của
mặt cầu đi qua các điểm A, B, C, M, N.
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy, SA = AC. Mặt phẳng qua A vuông góc với SC cắt SB, SC, SD lần lượt tại B', C', D'. Tỉ số giữa thể tích hình chóp S.A'B'C'D' và thể tích hình chóp S.ABCD là:
A. 1/6 B. 1/4
C. 1/3 D. 1/2
Chọn C.
Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.
Gọi I = AC ∩ BD, J = AC' ∩ SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.
Suy ra
Do đó dễ thấy
1.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và SA vuông góc với mặt phẳng (ABC).
a. Chứng minh (SBC) ⊥ (SAB).
b. Tính góc giữa hai mặt phẳng (SBC) và (ABC), biết AC=a√3 , SA= a√6 , BC = a
2.Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD) và SA= a√2/2
a. Chứng minh (SAC)⊥ (SBD).
b. Tính góc giữa hai mặt phẳng (SBD) và (ABCD)
Cho hình chóp S.ABCD có SA ⊥ (ABCD) và ABCD là hình chữ nhật với AB=a, AC=a 5 , SC=3a. Tính thể tích hình chóp S.ABCD
A. 4 a 3
B. 4 a 3 3
C. 2 a 3 3
D. a 3 3
Đáp án là B
Tam giác ABC vuông tại B nên
Tam giác SAC vuông tại A nên
Thể tích hình chóp S.ABCD là
Cho hình chóp S.ABCD có S A ⊥ A B C D và ABCD là hình chữ nhật với AB=a, A C = a 5 , S C = 3 a . Tính thể tích hình chóp S.ABCD
A. 4 a 3
B. 4 a 3 3
C. 2 a 3 3
D. a 3 3
Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc . Tính VS ABCD . theo a và . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.
Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.
Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.
Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .
. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:
a.Tính thể tích khối chóp S.ABC
b.Chứng minh SC vuông góc với (AB'C')
c.Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a , AC= 5 a . Cạnh bên SA= 2 a và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , A C = 5 a . Cạnh bên S A = 2 a và SA vuông góc với (ABCD) . Tính theo a thể tích V của khối chóp S.ABCD
A. V = 10 3 a 3
B. V = 2 a 3
C. V = 2 2 3 a 3
D. V = 2 3 3 a 3
Đáp án C
Ta có: B C = 5 a 2 − a 2 = 2 a ⇒ S A B C D = a .2 a = 2 a 2
Thể tích khối chóp S.ABCD là: V = 1 3 . S A . S A B C D = 1 3 . 2 a .2 a 2 = 2 2 a 3 3
1.Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB= \(\dfrac{a\sqrt{3}}{3}\), AD=a\(\sqrt{3}\), SA=a và vuông góc với mp đáy. Khi đó góc giữa SB và mp (SAD) bằng bao nhiêu?
2.Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. SA vuông góc với mp đáy. Số mặt của tứ diện là tam giác vuông là bao nhiêu?
3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, CA=a, CB=b, SA=h vuông góc với mặt đáy. Gọi I là trung điểm của AB.
a, CMR: BC vuông góc với (SAC)
b, Tính khoảng cách giữa SI và AC theo a,b,h
3.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
b.
Gọi M là trung điểm BC \(\Rightarrow IM||AC\)
\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)
Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K
\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)
Trong mp (SAK), kẻ AH vuông góc SK
\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)
\(AK=CM=\dfrac{b}{2}\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)
1.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)
2.
\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
\(\Rightarrow\) Tam giác SBC vuông
Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. AD = 2 BC , AB = BC = a , SA vuông góc với đáy, SA = a 2 . Tính góc giữa (AC, (SCD)).
A. 60 0
B. 75 0
C. 45 0
D. 30 0