Tính giới hạn: l i m x → 0 2 x + 1 - 8 - x 3 x
A. 8
B. 13/12
C. 1/2
D. - ∞
Cho hàm số y=f(x) =1/√(2-x). Khẳng định nào sau đây đúng:
A. Hàm số chỉ có giới hạn tại điểm x=2
B. Hàm số có giới hạn trái và giới hạn phải bằng nhau
C. Hàm số có giới hạn tại điểm x=2
D. Hàm số chỉ có giới hạn trái tại điểm x=2
Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái
Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)
Cho hàm số \(f\left(x\right)=x^2-2x+3\) . Khẳng định nào sau đây là sai:
A, Hàm số có giới hạn trái và phải tại điểm x=1 bằng nhau
B, Hàm số có giới hạn trái và phải tại mọi điểm bằng nhau
C, Hàm số có giới hạn tại mọi điểm
D, Cả ba khẳng định trên là sai
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải
Cho a, b là 2 số dương thỏa mãn giới hạn \(I=\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)\) hữu hạn. Tính I
\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)
Còn tuỳ vào độ lớn của a và b
Tính thể tích hình khối do hình phẳng giới hạn bởi các đường y=\(x^{\dfrac{1}{2}}e^{\dfrac{x}{2}}\) y=0,x=1,x=4
Tính thể tích hình khối do hình phẳng giới hạn bởi các đường y= \(x\sqrt{ln\left(1+x^3\right)}\) : y=0 : x=1
1.
\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)
\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)
\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\)
2.
\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)
\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)
\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)
\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)
Version:0.9 StartHTML:0000000105 EndHTML:0000016865 StartFragment:0000000141 EndFragment:0000016825
Câu 13. Tính các giới hạn sau: (a) limx→3 √ 1 + x − 2 x − 3 . (b) limx→0 x √x + 1 − 1. (c) limx→0 √ 1 + 4x − 1 1 − 3√1 − 6x. Câu 14. Tính các giới hạn sau: (a) limx→0 ln(cos x) ln(1 + ax2). (b) limx→0 ln(1 + 3x) tan x . (c) limx→0 √ 1 + 3x − 1 sin x . Câu 15. Tính các giới hạn sau: (a) limx→0 ex − e−x ln(1 + x). (b) limx→1 x − 1 + ln x ex − e . (c) limx→0 ex − x − 1 ex − 1 . (d) limx→1 x3 − 1 1 − xEm hãy cho biết giới hạn sinh thái là gi?
thế nào là giới hạn trên? giới hạn dưới?
thế nào là giới hạn chịu đựng?
giups mình với ạ
Cho hàm số:
y = 1 3 x 3 - m - 1 x 2 + m - 3 x + 4 1 2 (m là tham số) (1)
Tính diện tích hình phẳng giới hạn bởi (C) , trục hoành và các đường thẳng x = 0 và x = 2.
S = ∫ 0 2 1 3 x 3 + x 2 - 3 x + 4 1 2 d x = 7
Tính giới hạn I = l i m x → + ∞ x + 1 - x 2 - x + 2
A. I = 3 2
B. I = 1 2
C. I = 17 11
D. I = 46 31
Câu này làm như nào vậy ạ?
Đề bài: Tìm diện tích của hình phẳng giới hạn bởi hai đường cong có phương trình \(x-y^2=0\) và \(x+2y^2-12=0\).
Pt tọa độ giao điểm:
\(\left\{{}\begin{matrix}x-y^2=0\\x+2y^2-12=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y^2=x\\x+2x-12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=\pm2\end{matrix}\right.\)
Cũng từ 2 pt ta được \(\left\{{}\begin{matrix}x=y^2\\x=12-2y^2\end{matrix}\right.\)
Trên đoạn \(\left[-2;2\right]\), ta thấy \(12-2y^2\ge y^2\)
Vậy diện tích hình phẳng cần tìm:
\(S=\int\limits^2_{-2}\left(12-2y^2-y^2\right)dy=\left(12y-y^3\right)|^2_{-2}=32\) (đvdt)