Cho hàm số f(x) có đạo hàm liên tục trên ℝ , thỏa mãn c o t x . f x + f x = 2 cos 3 x với mọi x ≠ k π và f π 4 = 9 2 4 . Mệnh đề nào dưới đây đúng?
A. f π 3 ∈ 1 ; 4
B. f π 3 ∈ 6 ; 10
C. f π 3 ∈ 3 ; 5
D. f π 3 ∈ 4 ; 8
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f ( x ) . f ' ( x ) = f 2 ( x ) - x , ∀ x ∈ ℝ và f(2)=1 .Tích phân bằng
A. 3 2
B. 4 3
C. 2
D. 4
Chọn đáp án C.
Lấy tích phân hai vế trên đoạn [0;2] có
Tích phân từng phần có
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ, thỏa mãn 2 f 2 x + f 1 - 2 x = 12 x 2 . Tìm phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1
A. y=2x+2
B. y=4x-6
C. y=2x-6
D. y=4x-2
Cho hàm số f(x) có đạo hàm f ' (x) liên tục trên ℝ và thỏa mãn f ' x ∈ − 1 ; 1 với ∀ x ∈ 0 ; 2 . Biết f 0 = f 2 = 1. Đặt I = ∫ 0 2 f x d x , phát biểu dưới đây là ĐÚNG ?
A. I ∈ − ∞ ; 0 .
B. I ∈ 0 ; 1 .
C. I ∈ 1 ; + ∞ .
D. I ∈ 0 ; 1 .
Đáp án C
Phương pháp giải:
Áp dụng các đánh giá bất đẳng thức tích phân
Lời giải:
∫ 0 x − 1 d t ≤ ∫ 0 x f ' t d t ≤ ∫ 0 x 1 d t ∫ x 2 − 1 d t ≤ ∫ x 2 f ' t d t ≤ ∫ x 2 1 d t ⇔ − x ≤ f x − 1 ≤ x x − 2 ≤ 1 − f x ≤ 2 − x
⇔ 1 − x ≤ f x ≤ x + 1 x − 1 ≤ f x ≤ 3 − x
⇔ ∫ 0 2 x − 1 d x ≤ ∫ 0 2 min x + 1 ; 3 − x d x ⇔ ∫ 0 2 f x d x ≥ 1.
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ , thỏa mãn 2 f 2 x + f 1 - 2 x = 12 x 2 . Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 1 là
A. y=2x+2
B. y=4x-6
C. y=2x-6
D. y=4x-2
Xét hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn điều kiện f(1)=1 và f(2)=4 Tính J = ∫ 1 2 f ' x + 2 x - f x + 1 x 2 dx
A. J = 1 + ln 4
B. J = 4 - ln 2
C. J = ln 2 - 1 2
D. J = 1 2 + ln 4
Cho hàm số f(x) có đạo hàm liên tục trên ℝ / 0 và thỏa mãn 2 f ( 2 x ) - f 1 x = x 2 , ∫ 1 2 x f ' ( x ) d x = 5 . Giá trị ∫ 1 2 f 2 x d x bằng
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Đáp án C
Với f x > 0 , ∀ x ∈ ℝ . Xét biểu thức f ' x f x = 2 - 2 x *
Lấy nguyên hàm 2 vế (*), ta được ∫ d f x f x = ∫ 2 - 2 x d x
⇔ ∫ d f x f x = - x 2 + 2 x + C ⇔ ln f x = - x 2 + 2 x + C
Mà f(0) =1 suy ra C = lnf(0) = ln1 = 0. Do đó f x = e - x 2 + 2 x
Xét hàm số f x = e - x 2 + 2 x trên - ∞ ; + ∞ , có f ' x = - 2 x + 2 = 0 ⇔ x = 1
Tính giá trị f 1 = e ; lim x → - ∞ f x = 0 ; lim x → - ∞ f x = 0
Suy ra để phương trình f(x) = m có hai nghiệm thực phân biệt ⇔ 0 < m < e .