Cho cấp số cộng u n có công sai d = − 3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng S 100 của 100 số hạng đầu tiên của cấp số cộng đó.
A. S 100 = − 14400.
B. S 100 = − 14250.
C. S 100 = − 15480.
D. S 100 = − 14650.
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
cho cấp số cộng (u\(_n\)) có công sai d khác 0 và cấp số nhân (v\(_n\)) có công bội q là số dương thỏa mãn \(u_1=v_1=-2\); \(u_2=v_2\); \(u_3=v_3+8\). tính tổng d+q
\(u_2=u_1+d=-2+d\) ; \(v_2=v_1q=-2q\)
\(u_2=v_2\Rightarrow-2+d=-2q\Rightarrow d=2-2q\)
\(u_3=v_3+8\Leftrightarrow-2+2d=-2q^2+8\)
\(\Leftrightarrow-2+2\left(2-2q\right)=-2q^2+8\)
\(\Leftrightarrow2q^2-4q-6=0\Rightarrow\left[{}\begin{matrix}q=-1\Rightarrow d=4\\q=3\Rightarrow d=-4\end{matrix}\right.\)
Cho cấp số cộng u n có u 1 = − 2 và công sai d = 3 . Số hạng u 10 là
A. 25
B. 26
C. 27
D. 28
Đáp án A
u n = u 1 + n − 1 d ⇒ u 10 = − 2 + 9 .3 = 25
Cho cấp số cộng u n có u 1 = − 2 và công sai d=3 Tìm số hạng u 10 .
A. u 10 = − 2.3 9
B. u 10 = 25
C. u 10 = 28
D. u 10 = − 29
Đáp án B
u 10 = u 1 + 9 d = − 2 + 9.3 = 25
Cho cấp số cộng (un) có u1 = -2 và công sai d = 3. Tìm số hạng u10.
A. u 10 = - 2 . 3 9
B. u 10 = 25
C. u 10 = 28
D. u 10 = - 29
Cho cấp số cộng ( u n ) có u 1 = - 2 và công sai d=3. Số hạng u 10 là
A. 27
B. 28
C. 26
D. 25
Cho cấp số cộng u n có số hạng đầu u 1 = 3 và công sai d = 2 . Tính u 5
A. 11
B. 15
C. 12
D. 14
Chọn đáp án A
Ta có: u 5 = u 1 + 4 d = 3 + 4 . 2 = 11
Cho cấp số cộng ( u n ) có số hạng đầu u 1 = 3 và công sai d = 2 . Tính u 5
A. 11
B. 15
C. 12
D. 14
Chọn đáp án A
Ta có:
u 5 = u 1 + 4 d = 3 + 4 . 2 = 11
Cho dãy số \(({u_n})\) với \({u_n} = 3n + 6\). Khẳng định nào sau đây là đúng?
A. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
B. Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 6\).
C. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 3\).
D. Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 6\).
Ta có: \({u_n} - {u_{n - 1}} = \left( {3n + 6} \right) - \left[ {3\left( {n - 1} \right) + 6} \right] = 3,\;\forall n \ge 2\)
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với công sai \(d = 3\).
Chọn đáp án A.
Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d=2. Tìm n?
A. n =12
B.n =13
C. n= 14
D. n = 15
Theo giả thiết thì ta được một cấp số cộng có n+2 số hạng với u 1 = − 3 , u n + 2 = 23.
Khi đó u n + 2 = u 1 + n + 1 d ⇔ n + 1 = u n + 2 − u 1 d = 23 − − 3 2 = 13 ⇔ n = 12
Chọn đáp án A.