GPT:
\(\frac{\text{(x-b-c)}}{a}+\frac{\left(x-c-a\right)}{b}+\frac{\left(x-a-b\right)}{c}=3\)
gpt
a) \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
b)\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^{^2}}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(c-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Gpt: \(\frac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}\) = 1 ( a, b, c là các hằng số và khác nhau đoi một)
tôi chỉ giải được đến chỗ (x+a)(x+b)=2c(a+b) thôi
bài này cứ nhân chéo lên rồi biện luận. chtt đi bạn
Tìm các số a,b,c thỏa mãn :
a) \(\frac{\text{x^2}-x+2}{\text{ }\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\) b)\(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
:| Giúp tớ với
1)\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
2)\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
3)\(\frac{1}{x^2+3x+2}+\frac{2x}{x^3+4x^2+4x}+\frac{1}{x^2+5x+6}\)
Rút gọn:
a) P = \(\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ca}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) Q = \(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x+\frac{1}{x^3}}\)
Giúp mik nhé!
a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)
Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)
\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)
CMR : \(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{c+d+a}{\left(c-d\right)\left(d-b\right)\left(a-b\right)\left(x-b\right)}+\frac{d+a+b}{\left(d-c\right)\left(a-c\right)\left(b-c\right)\left(x-c\right)}\)\(+\frac{a+b+c}{\left(a-d\right)\left(b-d\right)\left(c-d\right)\left(x-d\right)}\)\(=\frac{x-a-b-c-d}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}.\)
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}=\frac{\left(a+b+c+d-x\right)+\left(x-a\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}\)\(=\frac{\left(a+b+c+d-x\right)}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{1}{\left(b-a\right)\left(c-a\right)\left(d-a\right)}\)
Áp dụng hoán vị vòng \(b\rightarrow c\rightarrow d\rightarrow a\rightarrow b\) vào VT , ta được :
\(\left(a+b+c+d-x\right)\)[\(\frac{1}{\left(a-b\right)\left(a-c\right)\left(a-d\right)\left(a-x\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)\left(b-d\right)\left(b-x\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)\left(c-d\right)\left(c-x\right)}\)\(+\frac{1}{\left(d-a\right)\left(d-b\right)\left(d-c\right)\left(d-x\right)}\).
Quy đồng mẫu thức và tính toán biểu thức trong [ ] ta được :
\(\frac{-1}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}\)
Vậy ...............
Tính A= \(\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\frac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}\)
\(\text{cho }a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(CMR:\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Cho hỏi gõ latex kiểu j vậy bạn phần mềm olm ko có mak
Cho 5 số thực khác nhau a,b,c,d,x.Chứng minh :
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{a+c+d}{\left(a-b\right)\left(c-b\right)\left(d-b\right)\left(x-b\right)}+\frac{a+b+d}{\left(a-c\right)\left(b-c\right)\left(d-c\right)\left(x-c\right)}+\)
\(\frac{a+b+c}{\left(a-d\right)\left(b-d\right)\left(c-d\right)\left(x-d\right)}=\frac{a+b+c+d-x}{\left(a-x\right)\left(b-x\right)\left(c-x\right)\left(d-x\right)}\)