Tìm giá trị của 2356 + ab cho a = 1482, b = 3105
1248 : 78 + 1482.Hãy tính giá trị của biểu thức
3584 : ( 4863 - 4807)
Cho a+b=1, tìm giá trị của a và b để a^3+b^3+ab đạt giá trị nhỏ nhất?
a^3+b^3+ab=(a+b)(a^2+b^2-ab)+ab=a^2+b^2
mà 2(a^2+b^2)>=(a+b)2(vì a^2+b^2>=2ab)
\(\Rightarrow\)a^2+b^2>=1/2
Cho \(\left\{{}\begin{matrix}a,b\ge0\\a^2+b^2-\sqrt{ab}=1\end{matrix}\right.\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=a^2+ab+b^2\)
cho a+b+c=3
a) tìm giá trị nhỏ nhất của a2 +b2+c2
b)tìm giá trị lớn nhất của ab+ac+bc
a) Áp dụng bất đẳng thức Bnhiacopxki ta có :
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a.1+b.1+c.1\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
b) Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3ab+3bc+3ac\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Rightarrow ab+ac+bc\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
cho a+b=1. tìm giá trị lớn nhất của biểu thức A=ab(b-a)^2.
\(A=\dfrac{1}{4}.4ab\left(a^2+b^2-2ab\right)\le\dfrac{1}{16}\left(4ab+a^2+b^2-2ab\right)=\dfrac{1}{16}\left(a+b\right)^2=\dfrac{1}{16}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{2-\sqrt{2}}{4};\dfrac{2+\sqrt{2}}{4}\right);\left(\dfrac{2+\sqrt{2}}{4};\dfrac{2-\sqrt{2}}{4}\right)\)
a) tìm giá trị lớn nhất của biểu thức P=6:(x.x-6x+17)
b) cho a, b thoả mãn a.a +b.b-ab=6 Tìm giá trị lớn nhất của biểu thức P=a.a+b.b
a.
\(P=\frac{6}{x^2-6x+17}\)
Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$
$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$
Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$
b/
Ta có:
$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$
$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$
$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
\(minM=1998\Leftrightarrow a=b=1\)
Cho \(B=\frac{ab}{a+b}\)(ab lá số tự nhiên có 2 chữ số, a khác 0 ). Tìm giá trị lớn nhất, giá trị nhỏ nhất của B.