cho P = n+4/ 2n - 1 tim n để P là số nguyên tố
tim n thuộc N để 2n - 1 va 2n +1 là số nguyên tố
tim n thuộc N để 2n - 1 va 2n +1 là số nguyên tố
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Tìm số tự nhiên n để biểu thức C=2n+2/n+2 + 5n+17/n+2 - 3n/n+2 là số tự nhiên
Cho phân số P=n+4/2n-1 với n thuộc Z. tìm số nguyên n để giá trị của P là số nguyên tố
Cho phân số M=n+1/n-1.Với giá trị nào của n thì M là một số chẵn?Một số nguyên âm?
Tập hợp các số tự nhiên n để p =(n+4).(2n-1)là số nguyên tố là ?
Lời giải:
Để $p=(n+4)(2n-1)$ là snt thì 1 trong 2 thừa số của nó bằng $1$ và thừa số còn lại là snt.
Hiển nhiên $n+4>1$ với mọi $n$ tự nhiên.
$\Rightarrow 2n-1=1\Rightarrow n=1$
Khi đó: $p=5.1=5$ là snt (thỏa mãn)
Tập hợp các số tự nhiên n để p=n+4/2n-1 là số nguyên tố là?
Tập hợp các số tự nhiên n để n+4/2n+1 là số nguyên tố
Cho P=n (4-n), tim số tự nhiên để P là số nguyên tố
P= n.(4-n) de p la so nguyen to
Ta co: n.(4-n) co uoc la 1
Đê h trên la sô nguyên tô thi n=1
+) Vơi n=1 thi n.(n-4)= 3 la sô nguyên tô
+) Vơi 4-n= 1→ n = 3thi n.(4-n)=3 la sô nguyên tô
Vây P la sô nguyên tô khi n=1 hoăc n =3
°○☆○°
Đung nhơ k cho tơ đây Phương ♧☆♡
Dong thư 3 mk viêt nhâm
Đê "h" chư k phai la "h"
nha
Tìm số tự nhiên n để:
a. n +4 chia hết cho n + 1
b. (n - 1)(n2 + 2n + 3) là số nguyên tố.
a) Xét \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)
Để p/s trên đạt giá trị nguyên thì (n+1) thuộc ư(3)
Bạn tự liệt kê
b) Đặt \(A=\left(n-1\right)\left(n^2+2n+3\right)\)
Vì A là số nguyên tô nên A chỉ có hai ước là 1 và chính nó
Suy ra các trường hợp : \(\begin{cases}n-1=1\\n^2+2n+3=A\end{cases}\) hoặc \(\begin{cases}n-1=A\\n^2+2n+3=1\end{cases}\)
Suy ra n = 2 thỏa mãn đề bài
a)n + 4 chia hết cho n + 1
=> n + 1 + 3 chia hết cho n + 1
Do n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1
Mà \(n\in N\Rightarrow n+1\ge1\)
=> \(n+1\in\left\{1;3\right\}\)
=> \(n\in\left\{0;2\right\}\)
b) Ta đã biết số nguyên tố chỉ có 2 ước duy nhất là 1 và chính nó
Mà \(n^2+2n+3\ge3\) với mọi n là số tự nhiên
=> n - 1 = 1; n2 + 2n + 3 là số nguyên tố
=> n = 2
Thử lại ta thấy: n2 + 2n + 3 = 22 + 2.2 + 3 = 11, là số nguyên tố, thỏa mãn
Vậy n = 2
a)Ta có:\(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)
Suy ra:\(3⋮n+1\)
Hoặc \(n+1\inƯ\left(3\right)\)
Vậy Ư(3) là:[1,-1,3,-3]
Do đó ta có bảng sau:
n+1 | -3 | -1 | 1 | 3 |
n | -1 | -2 | 0 | 2 |
Vậy n=-1;-2;0;2