Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
Thấu Minh Phong
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Hoàng Tử Hà
12 tháng 12 2020 lúc 23:16

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

Sonyeondan Bangtan
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 18:11

Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)

9.

\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)

Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)

Số hạng đó là: \(C_9^3.8^3=...\)

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 11 2021 lúc 15:47

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

Hung Truong
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2019 lúc 6:49

\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)

Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)

\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)

\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)

Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)

\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)

\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)

Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)

Hệ số: \(C_6^42^4\left(-1\right)^2=240\)

Khách vãng lai đã xóa
Tam Cao Duc
Xem chi tiết
Eren
25 tháng 3 2020 lúc 22:18

\(\left(\frac{1}{x}+x^3\right)^n=\sum\limits^n_{k=0}C^{n-k}_n\left(\frac{1}{x}\right)^{n-k}.\left(x^3\right)^k\)

Tổng các hệ số: \(C^0_n+C^1_n+...+C^n_n=\left(1+1\right)^n=2^n=1024\)

=> n = 10

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2019 lúc 15:47