Tìm các số nguyên tố x, y, z thoả món xy + 1 = z
Tìm các số nguyên tố x,y,z thoả mãn x^y+1=z
Tìm các số nguyên tố x, y, z thoả mãn:
\(^{x^y+1=z}\)
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
1. Tìm những cặp số (x,y) thoả mãn pt:
a) x² - 4x +y - 6√(y) + 13 = 0
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12.
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố
10. Viết số 100 thành tổng các số nguyên tố khác nhau
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)!
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương)
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x
16. a) CM x² + y² = 7z²
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ
Tìm các số nguyên tố x,y,z thỏa mãn:
(x+y)(xy+1)=2^y
Cho x, y, z là các số nguyên thoả mãn x + xy + y = 1 ; y + zy + z = 3; z + xz + x = 7. Tính giá trị
của biểu thức M = x + y^2 + z^3
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)
Nhân vế với vế
\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:
\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)
\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)
Tìm các số nguyên tố x, y, z thoả mãn:
\(x^2=8y+1\)
tìm các số nguyên x,y,z thoả mãn x2+y2+z2<xy+3y+2z-4
Chuyen sang ve trai cac hang tu chua x,y,z:
(x^2 - xy + y^2/4) + 3(y^2/4 - 2.y/2 + 1) + (z^2-2z+1) -3-1 <= -4
<=> (x-y/2)^2 + 3.(y/2 -1)^2 + (z-1)^2 <= 0
Binh phuong cua 1 so thi ko the am nen suy ra fai xay ra dong thoi:
x-y/2 =0 ; y/2 -1 =0 vaf z-1 =0
giai ra duoc x= 1; y=2; z=1 thoa man
Tìm các số nguyên tố x, y, z thoả mãn:
\(^{x^2-12y^2=1}\)
TA CÓ \(x^2-12y^2=1\)
\(\Leftrightarrow x^2=12y^2\)
\(\Leftrightarrow x=12y\)
\(\Leftrightarrow\frac{y}{1}=\frac{x}{12}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{y}{1}=\frac{x}{12}=\frac{y-x}{1-12}=\frac{1}{-11}=-\frac{1}{11}\)
tuwfddos tìm được x,y
Khoan, bài toán chưa đúng, tại sao x2 - 12y2 = 1 --> x2 = 12y2 + 1 mới đúng, nhưng mình sẽ sửa lại
Bg
Ta có: x2 - 12y2 = 1 (x; y \(\in\)N*; x; y là các số nguyên tố)
=> x2 - 1 = 12y2
Mà 12y2 chẵn nên x2 - 1 chẵn --> x2 lẻ --> x lẻ
Vì x lẻ nên x - 1 và x + 1 chẵn và là hai số chẵn liên tiếp.
*x2 - 1 = x2 - x + x - 1 = x(x - 1) + (x - 1) = (x + 1)(x - 1)
=> (x + 1)(x - 1) = 12y2
Xét (x + 1)(x - 1):
Vì x + 1 và x - 1 là hai số chẵn liên tiếp
Nên (x + 1)(x - 1) \(⋮\)8 Vào link mà xem tại sao hai số chẵn liên tiếp chia hết cho 8 nè: https://olm.vn/hoi-dap/detail/19601939308.html.
Vì (x + 1)(x - 1) = x2 - 1 \(⋮\)8
Nên 12y2 \(⋮\)8
Vì 12 không chia hết cho 8
Nên y2 ít nhất phải chia hết cho 2 --> y chẵn
Mà trong số nguyên tố chỉ có một số chẵn duy nhất là số 2
=> y = 2
Thay vào là đc:
x2 - 1 = 12.22
x2 - 1 = 48
x2 = 48 + 1
x2 = 49
x2 = 72
x = 7
Vậy x = 7 và y = 2.