Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2017 lúc 16:38

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 21:57

\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x-sinx=0\\x-m-3=0\\x-\sqrt{9-m^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=m+3\\x=\sqrt{9-m^2}\end{matrix}\right.\) 

Do hệ số bậc cao nhất của x dương nên:

- Nếu \(m=-3\Rightarrow f'\left(x\right)=0\) có nghiệm bội 3 \(x=0\) \(\Rightarrow x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m=3\Rightarrow x=0\) là nghiệm bội chẵn (không phải cực trị, ktm)

- Nếu \(m=0\Rightarrow x=3\) là nghiệm bội chẵn và \(x=0\) là nghiệm bội lẻ, đồng thời \(x=0\) là cực tiểu (thỏa mãn)

- Nếu \(m\ne0;\pm3\) , từ ĐKXĐ của m \(\Rightarrow-3< m< 3\Rightarrow\left\{{}\begin{matrix}m+3>0\\\sqrt{9-m^2}>0\end{matrix}\right.\)

Khi đó \(f'\left(x\right)=0\) có 3 nghiệm pb trong đó \(x=0\) là nghiệm nhỏ nhất

Từ BBT ta thấy \(x=0\) là cực tiểu

Vậy \(-3\le m< 3\)

Shuu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 12 2019 lúc 5:56

Chọn đáp án D

* Với m - 1 = 0 ⇔ m = 1 thì hàm số đã cho trở thành y = x + 1

Hàm số này có đồ thị là một đường thẳng và hàm số luôn đồng biến trên ℝ  

* Với m - 1 ≠ 0 ⇔ m ≠ 1 thì hàm số đã cho là một hàm số bậc ba có đạo hàm là

 

Do phương trình y ' = 0 có nhiều nhất hai nghiệm trên ℝ nên để hàm số đồng biến trên 

Do m ∈ ℤ nên  m ∈ 2 ; 3 ; 4

Vậy có 4 giá trị m nguyên để hàm số đã cho đồng biến trên ℝ là  m ∈ 1 ; 2 ; 3 ; 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2018 lúc 9:37

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 8 2017 lúc 13:35

Hàm số y   =   f x  với f(x) là hàm đa thức bậc 3 có 5 điểm cực trị khi và chỉ khi hàm số f(x) có hai cực trị và đồ thị của hàm số cắt trục hoành tại 3 điểm phân biệt.

Mặt khác, f(x) là hàm số bậc 3 nên khi đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt thì hàm số đồng thời cũng có hai cực trị. Do đó ta chỉ cần tìm điều kiện để phương trình f(x) = 0 có 3 nghiệm phân biệt.

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 6 2018 lúc 5:37

Chọn B

Phương pháp:

Tính y'.

Tìm m để 

Cách giải:

Ta có 

Xét phương trình y' = 0  có 

Suy ra phương trình y' = 0 luôn có hai nghiệm 

Dễ thấy  trong khoảng  thì hàm số đồng biến.

Bài toán thỏa 

Do 

 

Vậy có  giá trị của m thỏa mãn bài toán.

Chú ý:

Cách khác: Tìm m để 

Theo định lí Viet, ta có 

Hàm số đồng biến trên  ( 2 ; + ∞ )   ⇔   phương trình y' = 0 có hai nghiệm 

 

Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2019 lúc 14:27

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2019 lúc 5:57