Khai triển 1 + 2 x + 3 x 2 10 = a 0 + a 1 x + a 2 x 2 + . . . + a 20 x 20 . Tính tổng S = a 0 + 2 a 1 + 4 a 2 + . . . + 2 20 a 20
A. 15 10
B. 17 10
C. 7 10
D. 7 20
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
biết hệ số hạn thứ 3 trong khai triển ( x-1/x)^2 là y 66 tìm số hạn không chứa x trong khai triển đó
Biết tổng các hệ số của ba số hạng đầu trong khai triển \(\left(x^3+\dfrac{1}{x^2}\right)^n\) bằng 11. Tìm hệ số của \(x^7\) trong khai triển đó.
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
2. Trong khai triển nhị thức ( a +2)^n +6 ( n€N). Có tất cả 17 số hạng . Vậy n bằng?
6. Trong khai triển (2a -1)^6 tổng 3 số hạng đầu là?
7. Trong khai triển ( x - √y )^16 tổng hai số hạng cuối là
2/ \(\left(a+b\right)^k\Rightarrow k+1\left(so-hang\right)\)
\(\Rightarrow n+6+1=17\Rightarrow n=10\)
6/ \(\left(2a-1\right)^6=\sum\limits^6_{k=0}C^k_6.2^{6-k}.\left(-1\right)^k.a^{6-k}\)
\(\Rightarrow tong-3-so-hang-dau=C^0_6.2^6+C^1_6.2^5.\left(-1\right)+C^2_6.2^4.\left(-1\right)^2=...\)
7/ \(\left(x-\sqrt{y}\right)^{16}=\left(x-y^{\dfrac{1}{2}}\right)^{16}\)
\(\Rightarrow tong-2-so-hang-cuoi=C^{16}_{16}+C^{15}_{16}=...\)
Khai triển tích 3(x-1)^2-(x+1)^3 Lm từng các một nha
3(x - 1)2 - (x + 1)3
= 3(x2 - 2x + 1) - (x3 + 2x2 + 2x + 1)
= 3x2 - 6x + 3 - x3 - 2x2 - 2x - 1
= 3x2 - 2x2 - 6x - 2x - x3 + 3 - 1
= x2 - 8x - x3 + 2
Khai triển và thu gọn:
Câu 1. 2x (4x – 1) – x (8x + 1) – 3(x – 2)
Câu 2. (x – 2)(x – 3) – (x + 1)2
Khai triển tích 3(x-1)^2-(x+1)^2 Lm từng các một nha
\(3\left(x-1\right)^2-\left(x+1\right)^2\)
\(=3x^2-6x+3-x^2-2x-1\)
\(=2x^2-8x+2\)
3(x - 1)2 - (x + 1)2
= 3(x2 - 2x + 1) - (x2 + 2x + 1) (Dùng hằng đẳng thức)
= 3x2 - 6x + 3 - x2 - 2x - 1 (Dùng nhân đơn thức với đa thức và đưa hạng tử ra khỏi ngoặc)
= 3x2 - x2 - 6x - 2x - 1 + 3 (Tính tổng các hạng tử cùng đơn vị)
= 2x2 - 8x + 2 (Kết quả)
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
8. Trong khai triển (8a^2 - 1/2b)^6 hệ số của số hạng chứa a^9.b^3 là?
9. Trong khai triển ( x + 8/x^2)^9 số hạng ko chứa x là?
A. 4308
B. 86016
C. 84
D. 43008
Câu 8 là \(\left(8a^2-\dfrac{1}{2}b\right)^6\) hay \(\left(8a^2-\dfrac{1}{2b}\right)^6\) bạn? (tốt nhất là bạn dùng tính năng gõ công thức toán để đăng đề, hoặc chụp hình gửi đề trực tiếp lên, hiện nay hoc24 đã cho đăng đề bằng hình ảnh)
9.
\(\left(x+8.x^{-2}\right)^9=\sum\limits^9_{k=0}C_9^kx^{9-k}.8^k.x^{-2k}=\sum\limits^9_{k=0}C_9^k8^kx^{9-3k}\)
Số hạng ko chứa x \(\Rightarrow9-3k=0\Rightarrow k=3\)
Số hạng đó là: \(C_9^3.8^3=...\)
Trong các khai triển dưới đây, khai triển nào là đúng?
A. (x-2)3 = x3 - 6x2 +12x-8
B. (x-2)3 = x3 - 2x2 + 4x -8
C. (x-2)3 = 3x3 - 6x2 + 12x -24
D. (x-2)3 = x3 - 6x2 + 12x + 8
A. (x-2)3 = x3 - 6x2 +12x - 8 (hằng đẳng thức)