(x+3).(y-5)=5
a, x/5 = y/2 và 3x - 2y = 44
b, x/3 = y/5 và x + y = -32
c, x/-2 = y/-3 và 4x - 3y = -32
d, x/5 = y/3 và x + y = 20
e, x/5 = y/3 và x - y = 20
g, x/5 = y/7 và x + y = 48
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{-32}{8}=-4\)
Do đó: x=-12; y=-20
1: (x+1)(y+2)=5
mà y+2>=2(do y là số tự nhiên)
nên (x+1;y+2)∈(1;5)
=>(x;y)∈(0;3)
2: (x+1)(y+2)=6
mà x+1>=1 và y+2>=2(do x,y là các số tự nhiên)
nên (x+1;y+2)∈{(3;2);(2;3);(1;6)}
=>(x;y)∈{(2;0);(1;1);(0;4)}
3: (x+2)(y+3)=6
mà x+2>=2 và y+3>=3(do x,y là các số tự nhiên)
nên (x+2;y+3)∈{(2;3)}
=>(x;y)∈(0;0)
4: (x-1)(y+3)=6
mà y+3>=3(do y là số tự nhiên)
nên (x-1;y+3)∈{(2;3);(1;6)}
=>(x;y)∈{(3;0);(2;3)}
5: (x-1)(y-3)=5
=>(x-1;y-3)∈{(1;5);(5;1)}
=>(x;y)∈{(4;8);(6;4)}
6: (x-2)(y-1)=3
=>(x-2;y-1)∈{(1;3);(3;1)}
=>(x;y)∈{(3;4);(5;2)}
7: (x-2)(y-1)=5
=>(x-2;y-1)∈{(1;5);(5;1)}
=>(x;y)∈{(3;6);(7;2)}
8: (x-3)(y+1)=7
mà y+1>=1(do y là số tự nhiên)
nên (x-3;y+1)∈{(1;7);(7;1)}
=>(x;y)∈{(4;6);(10;0)}
tìm x,y,z biết:
câu 3:x/y=5/9 và x-y=-40
câu b: x/2=y/3 và 5.x-2.y=28
câu c: x/5=y/7=z/10 và x+y-z=20
câu d: x/3=y/4=z/5 và 3.x-2.y+2.z=121
câu e: x/4=y/2 và y/3=z/5 và x+y-z=20
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
Tìm y
a, 3/4 x y = 3/5 + 3/10 b, 3/5 : y = 3/4 - 2/5
c, 3/8 x 5/8 + y = 5/4 d, 3/8 + 5/8 x y = 5/4
e, 1/3 + 2/3 : x = 5/2
ai giải giúp em bài này với em đang cần gấp
c)\(\dfrac{3}{8}\times\dfrac{5}{8}+y=\dfrac{5}{4}\)
\(\dfrac{15}{64}+y=\dfrac{5}{4}\)
\(y=\dfrac{5}{4}-\dfrac{15}{64}\)
\(y=\dfrac{65}{64}\)
d, \(\dfrac{3}{8}+\dfrac{5}{8}\times y=\dfrac{5}{4}\)
\(\dfrac{5}{8}\times y=\dfrac{5}{4}-\dfrac{3}{8}\)
\(\dfrac{5}{8}\times y=\dfrac{7}{8}\)
\(y=\dfrac{7}{8}:\dfrac{5}{8}\)
\(y=\dfrac{7}{5}\)
a) 3/4 x y = 9/10
y = 9/10 : 3/4
y = 6/5
b) 3/5 : y = 7/20
y = 3/5 : 7/20
y = 12/7
e)\(\dfrac{1}{3}+\dfrac{2}{3}:x=\dfrac{5}{2}\)
\(\dfrac{2}{3}:x=\dfrac{5}{2}-\dfrac{1}{3}\)
\(\dfrac{2}{3}:x=\dfrac{13}{6}\)
\(x=\dfrac{2}{3}:\dfrac{13}{6}\)
\(x=\dfrac{4}{13}\)
Bài 62 làm phép chia
a,[5.(x-y)^4-3.(x-y)^3+4.(x-y)^2]:(y-x)^2
b,[(x+y)^5-2.(x+y)^4+3.(x+y)^3]:[-5(x + y)^3]=0
x3y5+x3y53+x3y55+x3y57+...+(2k-1)=3249x3y5
Làm phép chia:
a,(10 mũ 12 + 5 mũ 11 . 2 mũ 9 - 5 mũ 13 . 2 mũ 8) : 4 . 5 mũ 5 . 10 mũ 6
b,[5(x - y)mũ 4 - 3(x -y)mũ 3 + 4(x -y)mũ 2] : (y - x)mũ 2
c,[(x+y)mũ 5 - 2(x+y)mũ 4 + 3(x+y)mũ 3] : [-5(x+y)mũ 3]
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
Cho x+y+z=0.CMR: 5(x^3+y^3+z^3)(x^2+y^2+z^2)=6(x^5+y^5+z^5)
Cho x; y; z thỏa mãn :
(2.x-3.y)/5=(5.y-2.z)/3=(3.z-5.x)/2
Tính : (12.x+5.y-3.z)/(x-3.y-2.z)
a)Cho x+y=1 và xy=-6
Tính x^2+y^2;x^3+y^3;x^5+y^5
b)Cho x-y=1 và xy=6
Tính x^2+y^2; x^3-y^3; x^5-y^5
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)