Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BA=3a, BC=4a, S B C ⊥ A B C . Biết S B = 6 a , S B C ^ = 60 0 . Tính khoảng cách từ B đến (SAC).
A. 6 57 a 19
B. 2 3 a 19
C. 2 3 a 19
D. 57 a 6
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=3a, BC=4a và AB ⊥ (SBC) . Biết SB = 2 a 3 và S B C ^ = 30 ° . Thể tích khối chóp S.ABC bằng:
A. a 3 3 2
B. 2 a 3 3
C. 3 a 3 3 2
D. a 3 3
Cho hình chóp S.ABC có đáy tam giác ABC là tam giác vuông tại B, \(BA=3a,BC=4a\), mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết \(SB=2a\sqrt{3},\widehat{SBC}=30^o\).
Tính thể tích của khối chóp S>ABC và khoảng cách từ điểm B đến mặt phẳng (SAC) theo a
Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)
\(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)
Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)
Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)
Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)
\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)
\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)
\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)
Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)
\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)
\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)
Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Biết SB = 3a, AB = 4a, BC = 2a. Khoảng cách từ B đến mặt phẳng (SAC) bằng:
A. 12 61 a 61
B. 3 14 a 14
C. 4 a 5
D. 12 29 a 29
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Biết S B = 3 a , A B = 4 a , B C = 2 a . Khoảng cách từ B đến mặt phẳng (SAC) bằng:
A. 12 61 a 61
B. 3 14 a 14
C. 4 a 5
D. 12 29 a 29
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và cạnh bên SB vuông góc với mặt phẳng đáy. Cho biết SB=3a, AB=4a, BC=2a. Tính khoảng cách từ B đến mặt phẳng (SAC).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3a, BC = 4a, mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Biết SB = 2a 3 và S B C ^ = 30 0 . Tính khoảng cách từ B đến mặt phẳng (SAC) theo a.
A . 3 a 5
B . a 7
C . 6 a 7
D . 3 a 7
Hình chóp S.ABC là tam giác vuông tại B, BA = 3a, BC = 4a, S B C ⊥ A B C . Biết SB = 6a; S B C ⏜ = 60 ° . Tính khoảng cách từ B đến (SAC).
A. 17 a 57 57
B. 16 a 57 57
C. 19 a 57 57
D. 6 a 57 19
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=3a, BC=4a. Cạnh bên SA vuông góc với đáy. Góc tạo bởi giữa SC với đáy bằng 60 0 . Gọi M là trung điểm AC, tính khoảng cách giữa hai đường thẳng AB và SM
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B , A B = 3 a , B C = 4 a . Cạnh bên SA vuông góc với đáy. Góc tạo bởi giữa SC với đáy bằng 60 ° . Gọi M là trung điểm AC, tính khoảng cách giữa hai đường thẳng AB và SM
A. a 3
B. 10 a 3 79
C. 5 a 2
D. 5 a 3
Đáp án B
Gọi N là trung điểm của BC.
d A B , S M = d A , S M N
Dưng đường cao AK trong tam giác AMN, dựng đường cao AH trong tam giác SAK.
Dễ dàng chứng minh được A H ⊥ S M N tại H, suy ra d A B , S M = d A , S M N = A H
A K = B N = 2 a , S A = 5 a 3 ⇒ A H = 10 a 3 79