Cho f ( x ) = x 2018 = 1009 x 2 + 2019 x Giá trị của lim ∆ x → 0 f ( ∆ x + 1 ) - f ( 1 ) ∆ x bằng
A. 1009
B. 1008
C. 2018
D. 2019
cho x^4/a+y^4/b=(x^2+y^2)/(a+b), và x^2+y^2=1 cmr x^2018/a^1009 y^2018/b^1009=2/(a b)^1009
Cho x4/a+y4/b=1/a+b, x2+y2=1
Chứng minh: x2018/a1009+y2018/b1009=2/(a+b)1009
Ta có: \(x^2+y^2=1\Leftrightarrow\left(x^2+y^2\right)^2=1\) (1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right)ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1009}=\left(\frac{y^2}{b}\right)^{1009}=\left(\frac{1}{a+b}\right)^{1009}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}=\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}+\frac{1}{\left(a+b\right)^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\left(đpcm\right)\)
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=1\)và \(x^2+y^2=1\).CMR: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\).
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{\left(a+b\right)}\) Dề ntn thế này mới chuẩn >:
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(^{x^2+y^2}\)=1 chứng minh rằng x^2018/a^1009 + y^2018/b^1009 = \(\frac{2}{\left(a+b\right)^{1009}}\)
Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath tham khảo
cho a,b,x,y là các số thực thỏa mãn : \(x^2+y^2=1\)và \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)
Chứng minh rằng \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)
y3-9y2+29y-19=0=x3-9x2+29x-47
tính x+y
b) a2018+b2018+c2018=a1009b1009+b1009c1009+c1009a1009
tính (a-b)2017+(b-c)2018+(c-a)2019
So sánh : 2018 mũ 1009 và 2 x 2017 mũ 1009
2 x 2017 mũ 1009 lớn hơn vì 2017 mũ 1009 sẽ được thêm gấp đôi => sẽ lớn hơn
Với mỗi số nguyên dương n, ta kí hiệu d(n) là số các ước nguyên dương của n và s(n) là tổng tất cả các ước nguyên dương đó. Ví dụ, d(2018) = 4 vì 2018 có (và chỉ có) 4 ước nguyên dương là 1; 2; 1009; 2018 và s(2018) = 1 + 2 + 1009 + 2018 = 3030. Tìm tất cả các số nguyên dương x sao cho s(x) . d(x) = 96
Cho x,y thỏa mãn x * y= 2018. Hãy tìm giá trị nhỏ nhất của biểu thức \(P={2\over x} + {1009\over y} - {2018\over 2018x +4y}\)
Cho \(\int_0^4f\left(x\right)dx=2018\)Giá trị \(\int_0^2f\left(2x\right)dx+\int_{-2}^2\text{}f\left(2-x\right)dx\)bằng
A. 4036
B. 3027
C. 0
D. -1009
\(I_1=\int\limits^2_0f\left(2x\right)dx\)
Đặt \(2x=t\Rightarrow dx=\frac{dt}{2}\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=2\Rightarrow t=4\end{matrix}\right.\)
\(\Rightarrow I_1=\int\limits^4_0f\left(t\right).\frac{dt}{2}=\frac{1}{2}\int\limits^4_0f\left(t\right)dt=\frac{1}{2}\int\limits^4_0f\left(x\right)dx=\frac{1}{2}.2018=1009\)
\(I_2=\int\limits^2_{-2}f\left(2-x\right)dx\)
Đặt \(2-x=t\Rightarrow dx=-dt\); \(\left\{{}\begin{matrix}x=-2\Rightarrow t=4\\x=2\Rightarrow t=0\end{matrix}\right.\)
\(\Rightarrow I_2=\int\limits^0_4f\left(t\right).\left(-dt\right)=\int\limits^4_0f\left(t\right)dt=\int\limits^4_0f\left(x\right)dx=2018\)
\(\Rightarrow I=I_1+I_2=1009+2018=3027\)