Cho đa thức f(x) = ( 1 + 3 x ) n = a 0 + a 1 x + a 2 x 2 + . . . . + a n x n ( n ∈ ℕ * ) . Tìm hệ số a 3 , biết rằng: a 1 + 2 a 2 + . . . . + n a n = 49152n
A. a 3 = 945
B. a 3 = 252
C. a 3 = 5670
D. a 3 = 1512
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
bài 1:
cho đa thức f(x) thỏa mãn (x^2 - 25).f(x+1) = (x-2).f(x-1)
chứng minh f(x) có ít nhất ba nghiệm
bài 2:
cho đa thức f(x) thỏa mãn (x-1).f(x) = (x + 4).f(x+8)
chứng minh f(x) có ít nhất hai nghiệm
bài 3:
cho đa thức f(x) thỏa mãn (x-3).f(x) = (2x -1) .f(x-2)
chứng minh f(x) có ít nhất hai nghiệm
Cho đa thức f(x) thỏa mãn : (x+3)f(x-2)=(1-x)f(x+5) đúng với mọi x. Chứng minh rằng đa thức f(x) có ít nhất 3 nghiệm
* Với x=-3 ta có:
(-3+3) . f(-3-2) = (1+3) . f(-3+5)
=> 0.f(-5) = 4.f(2)
=> 0=4.f(2)
=> f(2)=0
=> -3 là nghiệm của đa thức f(x). (1)
* Với x= 1 ta có:
(1+3) . f(1-2) = (1-1) . f(1+5)
=> 4.f(-1) = 0.f(6)
=> 4.f(-1) = 0
=> f(-1) =0
=> x=1 là nghiệm của đa thức f(x). (2)
Từ (1) và (2) => đa thức f(x) có ít nhất 2 nghiệm
1)
a) Cho biểu thức f(x) = x\(^2\)- 4x +3
Tính f(0) , f(1) , f(-1) , f(3) ; giá trị nào là nghiệm của đa thức f(x)
b) Tìm hệ số a của đa thức N(x) = ax\(^3\) - 2ax -3 , biết N(x) có nghiệm x = -1
a)f(0) = 02 - 4.0 + 3= 0 - 0 + 3 = 3
f(1) = 12 - 4.1 +3 = 1 - 4 +3 = 0
f(-1) = (-1)2 - 4.(-1) +3 = 1 - (-4) +3 = 8
f(3)= 32 - 4.3 +3 = 9 - 12 + 3 = 0
vậy giá trị 1 và 3 là nghiệm của đa thức f(x)
b)thay x = -1 vào đa thức N(x) ta được:
N(x) = a. (-1)3 - 2a.(-1) - 3 = 0
\(\Leftrightarrow\) a. (-1) - 2a.(-1) = 3
\(\Leftrightarrow\) (- a) + 2a = 3 \(\Rightarrow\) a = 3
1)
a) Cho biểu thức f(x) = x\(^2\) - 4x +3
Tính f(0) , f(1) , f(-1) , f(3) ; giá trị nào là nghiệm của đa thức f(x)
b) Tìm hệ số a của đa thức N(x) = ax\(^3\) - 2ax -3 , biết N(x) có nghiệm x = -1
Hướng dẫn:
a, Bạn thay xem số nào thì f(x) = 0 thì số đó là nghiệm
hoặc có thể tìm x với f(x) = 0 rồi chọn số
b, thay x = -1 là nghiệm của N(x) ta có:
\(-a+2a-3=0\Rightarrow a=3\)
Vậy a = 3
a)f(0)=02-4.0+3=0-0+3=3
f(1)=12-4.1+3=1-4+3=0
f(-1)=(-1)2-4.(-1)+3=1+4+3=8
f(3)=32-4.3+3=9-12+3=0
b)
a.(-1)3-2a.(-1)-3=0
-a+2a-3=0
a-3=0
a=3
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
cho f(x)=(x-1)(x+3) và g(x)=x3-ax2+bx -3
xác định hệ số a,b của đa thức g(x) biết no của đa thức f(x) cũng là no của đa thức g(x)
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho: Đa thức f(x)=x^4+mx^3+21x^2+x+n chia hết cho đa thức g(x)=x^2-x-2.
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
Bài 1: Cho 2 đa thức
M(x)=2,5x^2 -0,5x-x^3-1;1/2 N(x)=-x^3+2,5x^2-6+2x
a,Tìm A(x)=M(x) -N(x) .Rồi tìm nghiệm A(x)
b,Tìm đa thức B(x) biết B(x) =M(x)+N(x),tìm bậc của đa thức B(x)
Bài 3:Tìm nghiệm
a,f(x)=x^2-4x+3
b,f(x)=x^2-7x+12
c,f(x)=x^2+2x+1
d,f(x)=x^4+2
Ok help me pls ;-;
Bài 3:
a) Đặt f(x)=0
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
b) Đặt f(x)=0
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Bài 3:
c) Đặt f(x)=0
\(\Leftrightarrow x^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
d) Đặt f(x)=0
\(\Leftrightarrow x^4+2=0\)
\(\Leftrightarrow x^4=-2\)(Vô lý)