Giải bất phương trình: (x – 3)2 < x2 – 3
Giải các bất phương trình: 3(x – 2)(x + 2) < 3 x 2 + x
Ta có: 3(x – 2)(x + 2) < 3 x 2 + x
⇔ 3( x 2 – 4) < 3 x 2 + x
⇔ 3 x 2 – 12 < 3 x 2 + x
⇔ 3 x 2 – 3 x 2 – x < 12
⇔ -x < 12
⇔ x > -12
Vậy tập nghiệm của bất phương trình là S = {x|x > -12}
Bài 1: Giải các bất phương trình sau
a) x+1/x+3 > 1
b) 2x-1/x-3 ≤ 2
c) x2+2x+2/x2+3 ≥ 1
d) 2x+1/x2+2 ≥ 1
a, \(\dfrac{x+1}{x+3}>1\Leftrightarrow\dfrac{x+1}{x+3}-1>0\Leftrightarrow\dfrac{x+1-x-3}{x+3}>0\)
\(\Rightarrow x+3< 0\)do -2 < 0
\(\Rightarrow x< -3\)Vậy tập nghiệm BFT là S = { x | x < -3 }
b, \(\dfrac{2x-1}{x-3}\le2\Leftrightarrow\dfrac{2x-1}{x-3}-2\le0\Leftrightarrow\dfrac{2x-1-2x+6}{x-3}\le0\)
\(\Rightarrow x-3\le0\)do 5 > 0
\(\Rightarrow x\le3\)Vậy tập nghiệm BFT là S = { x | x \(\le\)3 }
c, \(\dfrac{x^2+2x+2}{x^2+3}\ge1\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-1\ge0\)
\(\Leftrightarrow\dfrac{x^2+2x+2-x^2-3}{x^2+3}\ge0\Rightarrow2x-1\ge0\)do x^2 + 3 > 0
\(\Rightarrow x\ge\dfrac{1}{2}\)Vậy tập nghiệm BFT là S = { x | x \(\ge\)1/2 }
mình ko chắc nên mình đăng sau :>
d, \(\dfrac{2x+1}{x^2+2}\ge1\Leftrightarrow\dfrac{2x+1}{x^2+2}-1\ge0\Leftrightarrow\dfrac{2x+1-x^2-2}{x^2+2}\ge0\)
\(\Rightarrow-x^2+2x-1\ge0\Rightarrow-\left(x-1\right)^2\ge0\)vô lí
Bài 1: (3 điểm) Giải phương trình và bất phương trình:
C) x – 2)2 + 2(x – 1) ≤ x2 + 4
Tham Khảo nào
a) Điều kiện: x + 2 ≠ 0 và x – 2 ≠ 0 ⇔ x ≠ ± 2
(Khi đó: x2 – 4 = (x + 2)(x – 2) ≠ 0)
Vậy tập nghiệm của pt là: S = {-1; 1}
b) Điều kiện: 2x ≥ 0 ⇔ x ≥ 0
Khi đó: |x – 5| = 2x ⇔ x – 5 = 2x hoặc x – 5 = -2x
⇔ x = -5 hoặc x = 5/3
Vì x ≥ 0 nên ta lấy x = 5/3 . Tập nghiệm : S = {5/3}
c) x – 2)2 + 2(x – 1) ≤ x2 + 4
⇔ x2 – 4x + 4 + 2x – 2 ≤ x2 + 4
⇔ -2x ≤ 2
⇔ x ≥ -1
Tập nghiệm S = {x | x ≥ -1}
Giải các bất phương trình a (x-1)(2-x)>0 b x2 -4x+3
Giải bất phương trình sau
|x2+4x+3| ≤ x+3
Lời giải:
BPT \(\Leftrightarrow \left\{\begin{matrix} x+3\geq 0\\ (x^2+4x+3)^2\leq (x+3)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2(x+3)^2\leq (x+3)^2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ (x+1)^2\leq 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ x(x+2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -3\\ -2\leq x\leq 0\end{matrix}\right.\)
\(\Rightarrow -2\leq x\leq 0\)
Giải bất phương trình
a) 4(x-3)2-(2x-1)2<10
b) x(x-5)(x+5)-(x+2)(x2-2x+4)<hoặc= 3
a: =>4x^2-24x+36-4x^2+4x-1<10
=>-20x<10-35=-25
=>x>=5/4
b: =>x(x^2-25)-x^3-8<=3
=>x^3-25x-x^3-8<=3
=>-25x<=11
=>x>=-11/25
Giải bất phương trình sau: (x2 + 1)(x2 + 2)(x2 + 3)(x2 + 4) - 24 > 0
\(\Leftrightarrow\left(x^4+5x^2+6\right)\left(x^4+5x^2+4\right)-24\)
Đặt \(x^4+5x^2+6=t\)
\(t\left(t-2\right)-24=t^2-2t-24\)
\(\Leftrightarrow t^2-2t+1-25=\left(t-1\right)^2-5^2=\left(t-6\right)\left(t+4\right)>0\)
TH1 : \(\left\{{}\begin{matrix}t-6>0\\t+4>0\end{matrix}\right.\Leftrightarrow t>6\)
TH2 : \(\left\{{}\begin{matrix}t-6< 0\\t+4< 0\end{matrix}\right.\)<=> t < -4
Theo cách đặt \(x^4+5x^2+6>6\Leftrightarrow x^2\left(x^2+5\right)>0\)* luôn đúng *
\(x^4+5x^2+6< -4\Leftrightarrow x^4+5x^2+10< 0\)
\(\Leftrightarrow x^4+\dfrac{2.5}{2}x^2+\dfrac{25}{4}+\dfrac{15}{4}< 0\Leftrightarrow\left(x^2+\dfrac{5}{2}\right)^2+\dfrac{15}{4}< 0\)( vô lí )
Giải bất phương trình (x2 - 4)(x - 3) ≥ 0 ta được?
A. -2 ≤ x ≤ 2 hoặc x ≥ 3.
B. x ≤ 2 hoặc x ≥ 3.
C. x ≥ 3
D. x ≤ -2
Ta có (x2 - 4)(x - 3) ≥ 0 Û (x - 2)(x + 2)(x - 3) ≥ 0
Ta có
X - 2 = 0 Û x = 2; x - 3 = 0 Û x = 3; x + 2 = 0 Û x = -2
Bảng xét dấu
Từ bảng xét dấu ta có (x2 - 4)(x - 3) ≥ 0 Û -2 ≤ x ≤ 2 hoặc x ≥ 3.
Đáp án cần chọn là: A
Giải bất phương trình sau: (2x - 1)(x + 3) - 3x + 1 ≤ (x - 1)(x + 3) + x2 - 5
(2x – 1)(x + 3) – 3x + 1 ≤ (x – 1)(x + 3) + x2 – 5
⇔ 2x2 + 6x - x – 3 – 3x + 1 ≤ x2 + 3x - x – 3 + x2 – 5
⇔ 2x2 + 2x – 2 ≤ 2x2 + 2x – 8
⇔ 6 ≤ 0 (Vô lý).
Vậy BPT vô nghiệm.