Tính các tích phân sau: ∫ 0 π 4 x sin x + ( x + 1 ) cos x xsinx + cosx d x
Trong các khoảng sau, m thuộc khoảng nào để phương trình sin^2 x-(2m+1) sin x.cos x + 2m cos^2 x = 0 có nghiệm thuộc khoảng (π/4 ; π/3)?
\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)
Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho
\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)
\(\Rightarrow1< 2m< \sqrt[]{3}\)
\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)
Giải các phương trình sau. π 1. 2sin( x − ) − 2 = 0 . 4 2. sin 2 x − 2 3 sin 2 x − cos x + 3 sin x = 0 .
giúp em với adim
lớp 11
sin ( x + π 4 ) + sin ( x − π 4 ) = 0 thuộc khoảng (0;4π)
Diện tích hình phẳng giới hạn bởi các đường cong y = sin x; y= cos x và các đường thẳng x = 0 , x = π bằng
A. 3 2
B. 2
C. 2 2
D. - 2 2
Đáp án C
Giải phương trình: s inx = cos x ⇒ x = π 4 (vì 0 ≤ x ≤ π )
S = ∫ 0 π s inx − cos x d x = 2 2
Giải các pt sau:
1. sin\(^2\) 2x = cos\(^2\) (x-π/4)
2. sin\(^2\)x + cos\(^2\)4x = 2
1.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}+\dfrac{1}{2}cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow-cos4x=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(4x-\pi\right)=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\pi=2x-\dfrac{\pi}{2}+k2\pi\\4x-\pi=\dfrac{\pi}{2}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\)
2.
\(\Leftrightarrow1-cos^2x+1-sin^24x=2\)
\(\Leftrightarrow cos^2x+sin^24x=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\sin4x=0\end{matrix}\right.\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
Tính:F=Cos(π/4+α) x cos(π/4-α)
G=Sin(π/3+α) x cos(π/3-α)
H=cos(π/2-α) x sin(π/2+α)
I=sin(π/4+α) - cos(π/4-α)
K=cos(π/6-x) - sin(π/3+x)
Tính tích phân( cận dưới =0 cận trên =π/2 ) của ( 1+sin^3xcosx)sinxdx
Nhân phân phối sinx vào, tách ra 2 tích phân
Tích phân đầu nguyên hàm sinx là ra
Tích phân 2, đặt t=sinx => dt=cosxdx, đổi cận, thế vào, nguyên hàm lại là ra
Cho f(x)= log 5 ( sin x ) , x ∈ ( 0 ; π / 2 ) . Tính f'(x)
Tìm tất cả các nghiệm của phương trình sin x + sin 2x + sin3x = 0 thuộc ( 0 ; π )
A. 3
B. 4
C. 5
D. 6
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0