Tính các giới hạn sau l i m ( n 2 + 2 n − 5 )
1) tính giới hạn \(\lim\limits_{n\rightarrow\infty}\sqrt{n^2-1}+3n\)
2) tính giới hạn I = \(\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+5}+n\right)\)
1:
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2-1-9n^2}{\sqrt{n^2-1}-3n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{-8n^2-1}{\sqrt{n^2-1}-3n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-8-\dfrac{1}{n^2}\right)}{n\left(\sqrt{1-\dfrac{1}{n^2}}-3\right)}=\lim\limits_{n\rightarrow\infty}-\dfrac{8}{1-3}\cdot n=\lim\limits_{n\rightarrow\infty}4n=+\infty\)
2:
\(\lim\limits_{n\rightarrow\infty}\sqrt{4n^2+5}+n\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+5-n^2}{\sqrt{4n^2+5}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+5}{\sqrt{4n^2+5}-n}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{5}{n^2}\right)}{n\left(\sqrt{4+\dfrac{5}{n^2}}-1\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n\cdot\left(\dfrac{3}{\sqrt{4}-1}\right)=+\infty\)
Tính giới hạn L = \(\dfrac{n^2+n+5}{2n^2+1}\)
\(=\lim\dfrac{1+\dfrac{1}{n}+\dfrac{5}{n^2}}{2+\dfrac{1}{n^2}}=\dfrac{1}{2}\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
Tính các giới hạn sau l i m 1 + 2 + 3 + . . . + n n 2 + n + 1
l i m 1 + 2 + 3 + . . . + n n 2 + n + 1 = 1 2
Em hãy cho biết giới hạn sinh thái là gi?
thế nào là giới hạn trên? giới hạn dưới?
thế nào là giới hạn chịu đựng?
giups mình với ạ
Tính các giới hạn sau:
\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)
\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
\(\lim\limits\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n^2}}+2-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{2+2}{1+1}=\dfrac{4}{2}=2\)
\(\lim\limits\left[\sqrt{n}\left(\sqrt{n+1}-n\right)\right]\)
\(=\lim\limits\left[\sqrt{n^2+n}-\sqrt{n^3}\right]\)
\(=\lim\limits\dfrac{n^2+n-n^3}{\sqrt{n^2+n}+\sqrt{n^3}}\)
\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}+\sqrt{n^3}}\)
\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3}\left(\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1\right)}\)
\(=\lim\limits\dfrac{n\sqrt{n}\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}lim\left(n\sqrt{n}\right)=+\infty\\lim\left(\dfrac{-1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)=-\dfrac{1}{1}=-1< 0\end{matrix}\right.\)
Cho hàm số \(f\left(x\right)=x^2-2x+3\) . Khẳng định nào sau đây là sai:
A, Hàm số có giới hạn trái và phải tại điểm x=1 bằng nhau
B, Hàm số có giới hạn trái và phải tại mọi điểm bằng nhau
C, Hàm số có giới hạn tại mọi điểm
D, Cả ba khẳng định trên là sai
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải
1) So sánh quần cư nông thôn và quần cư thành thị. Nêu tình hình đô thị hóa trên thế giới.
2) Nêu giới hạn và đặc điểm đới nóng.
3) Nêu giới hạn và đặc điểm của môi trường xích đạo ẩm.
4) Nêu giới hạn và đặc điểm của môi trường nhiệt đới.
5) Nêu giới hạn, khí hậu và đặc điểm của môi trường nhiệt đới gió mùa.
1)
Quần cư nông thôn:
Có mật độ dân số thấp. Sống theo làng mạc, thôn xóm. Chủ yếu là nhà sàn gắn liền với ruộng nương. Sống theo quản hệ thị tộc (dòng máu). Nghề chủ yếu là sản xuất nông, lâm ngư nghiệp.
Quần cư đô thị:
2.
- Vị trí: nằm ở giữa 2 đường chí tuyến
- Đặc điểm: + là khu vực nhận được nhiều ánh sáng từ mặt trời
+ Nhiệt độ trung bình luôn trên 20oC
+ Có gió tín phong thổi quanh năm
+ Lượng mưa trung bình từ 1000mm đến 2000mm một năm
+ Sinh vật phong phú và đa dạng
+ Dân cư tập trung đông đúc
3.
- Vị trí : \(5^0B->5^0N\)
* Đặc điểm
-Khí hậu
+Nhiệt độ khoảng từ 25 độ C đến 30 độ C.
+Lượng mưa trung bình một năm từ 1500mm đến 2500mm, mưa quanh năm.
+Độ ẩm cao , trung bình trên 80%, nên không khí ẩm ướt , ngột ngạt.
+Thời tiết nóng ẩm quanh năm.
Cho hàm số y=f(x) =1/√(2-x). Khẳng định nào sau đây đúng:
A. Hàm số chỉ có giới hạn tại điểm x=2
B. Hàm số có giới hạn trái và giới hạn phải bằng nhau
C. Hàm số có giới hạn tại điểm x=2
D. Hàm số chỉ có giới hạn trái tại điểm x=2
Do \(x< 2\) nên x chỉ tiến tới 2 từ phía trái
Do đó hàm số chỉ có giới hạn trái tại điểm x=2 (giới hạn bằng dương vô cực)
Tính các giới hạn sau:
\(a.lim\left(\dfrac{\left(n-1\right)!+n!+3}{\left(n+2\right)!-\left(n-2\right)!}\right)\)
b.\(lim\left(\dfrac{2n+1}{n\cdot3^n}\right)\)
\(a=\lim\dfrac{\left(n-2\right)!\left(n-1+\left(n-1\right)n\right)}{\left(n-2\right)!\left(\left(n+2\right)\left(n+1\right)n\left(n-1\right)-1\right)}+\lim\dfrac{3}{\left(n+2\right)!-\left(n-2\right)!}\)
\(=\lim\dfrac{n^2-1}{\left(n+2\right)\left(n+1\right)n\left(n-1\right)-1}+\lim\dfrac{3}{\left(n+2\right)!-\left(n-2\right)!}\)
\(=0+0=0\)
\(b=\lim\dfrac{2+\dfrac{1}{n}}{3^n}=\dfrac{2}{\infty}=0\)