Giả sử AB là một dây cung của đường tròn (O). Trên cung nhỏ AB lấy các điểm C và D sao cho A C ⏜ = B D ⏜ . Chứng minh AB và CD song song
cho nửa đường tròn O, đường kính AB=2R . Điểm C là trung điểm của cung AB , trên cung AC lấy điểm F bất kỳ. Trên dây BF lấy điểm E sao cho BE=AF. Giả sử điểm F di động. Tìm tập hợp điểm E
Trên dây cung AB của một đường tròn O, lấy hai điểm C và D chia dây này thành ba đoạn thẳng bằng nhau AC = CD = DB. Các bán kính qua C và D cắt cung nhỏ AB lần lượt tại E và F. Chứng minh rằng :
a) Cung AE = Cung FB
b) Cung AE = Cung EF
Cho (O) và dây cung AB. Trên tia AB lấy điểm C nằm ngoài đường tròn. Từ điểm chính giữa P của cung lớn AB kẻ đường kính PQ cắt dây AB tại D. Tia CP cắt đường tròn tại điểm thứ 2 là I. Các dây AB và QI cắt nhau tại K. Cho A, B, C là 3 điểm cố định. CMR: Khi O thay đổi nhưng vẫn đi qua A, B thì đường thẳng QI luôn đi qua 1 điểm cố định
cho đường tròn tâm o đường kính AB trên cùng 1 nửa đường tròn (O) đường kính AB lấy 2 điểm C và D sao cho cung AC nhỏ ho7n cung AD .Gọi T là giao điểm của CD và AB .Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằ giũa cung nhỏ CD ) nối MN cắt AB tại E . cHỨNG MINH TM là tiếp tuyến của đường tròn (O) chứng minh TM^2= TC.TD . 4 điểm o, d,c,e cùng nằm trên đường tròn
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp
Cho đường tròn (O), dây AB. Trên tia BA lấy điểm C sao cho A nằm giữa B và C. Từ điểm chính giữa P của cung lớn AB, kẻ đường kính PQ của đường tròn, cắt dây AB tại D. Tia CP cắt đường tròn (O) tại điểm thứ hai là I. Các dây AB và QI cắt nhau tại K.
a) Chứng minh: các điểm P, D, K, I cùng thuộc một đường tròn.
b) Chứng minh: CI.CP = CK.CD.
c) Chứng minh: KA.KB = CA.CB
Cho đường tròn (O;3 cm), dây AB dài 4,8 cm, qua O kẻ tia Ox vuông góc với AB tại H trên tia Ox lấy điểm C sao cho OC = 5 cm a) Tính độ dài các đoạn thẳng OH và HC? b) Chứng minh AC là tiếp tuyến của (O)? c) Trên cung nhỏ AB lấy điểm D. Qua D vẽ tiếp tuyến với (O) cắt AC, BC theo thứ tự là E và F. Tính chu vi tam giác CEF
a: Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>\(HA=HB=\dfrac{AB}{2}=2,4\left(cm\right)\)
Ta có: ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=3^2-2,4^2=3,24\)
=>\(OH=\sqrt{3,24}=1,8\left(cm\right)\)
OH+HC=OC
=>HC=OC-OH=5-1,8=3,2(cm)
b: Ta có: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AC^2=2,4^2+3,2^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔAOC có \(AO^2+AC^2=OC^2\)
nên ΔAOC vuông tại A
=>CA\(\perp\)OA tại A
=>CA là tiếp tuyến của (O)
b: Xét ΔCAB có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAB cân tại C
=>CA=CB
Xét ΔOAC và ΔOBC có
OA=OB
AC=BC
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
Xét (O) có
EA,ED là các tiếp tuyến
Do đó: EA=ED
Xét (O) có
FD,FB là các tiếp tuyến
Do đó: FD=FB
Chu vi tam giác CEF là:
\(CE+EF+CF\)
=CE+ED+DF+CF
=CE+EA+CF+FB
=CA+CB
=2CA
=8(cm)
Cho đường tròn (O), AB là dây cố định không đi qua tâm. M là một điểm trên cung lớn AB sao cho tam giác MAB nhọn. Gọi D và C theo thứ tự là điểm chính giữa của các cung nhỏ MA, MB. Đường thẳng AC cắt đường thẳng BD tại I, đường thẳng CD cắt các cạnh MA và MB lần lượt tại P, Q.
a) Chứng minh tam giác ADI cân
b) Chứng minh tứ giác ADPI nội tiếp
c) Chứng minh PI = MQ
d) Tia MI cắt đường tròn (O) tại N. Khi M chuyển động trên cung lớn AB thì trung điểm của MN chuyển động trên đường nào ?
a: góc AID=1/2(sđ cung AD+sđ cung CB)
=1/2(sđ cung MD+sđ cung MC)
=1/2*sđ cung CD
=góc DAI
=>ΔAID cân tại D
b: góc PAI=góc PDI(1/2sđ cung MC=1/2sđ cung CB)
=>PDAI nội tiếp
Cho đường tròn (O) một cung AB và S là điểm chính giữa cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH, SE gặp đường tròn tại C và D. Chứng minh EHCD là tứ giác nội tiếp.
\(S\) là điểm chính giữa cung \(\widehat{AB}\)
\(\Rightarrow\widehat{SA}=\widehat{SB}\left(1\right)\)
\(\widehat{DEB}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}\right)\)( tính chất có đỉnh ở bên trong đường tròn ) \(\left(2\right)\)
\(\widehat{DCS}=\dfrac{1}{2}sđ\widehat{DAS}\) ( tính chất góc nội tiếp ) hay \(\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DA}+sd\widehat{SA}\right)\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sd\widehat{AS}+sd\widehat{DA}+sđ\widehat{SA}\right)\left(4\right)\)
Từ \(\left(1\right);\left(4\right)\Rightarrow\widehat{DEB}+\widehat{DCS}=\dfrac{1}{2}\left(sđ\widehat{DCB}+sđ\widehat{SA}+sđ\widehat{DA}+sđ\widehat{BS}\right)=\dfrac{360^o}{2}=180^o\)
Hay \(\widehat{DEH}+\widehat{DCH}=180^o\)
Vậy: tứ giác EHCD nội tiếp được trong một đường tròn.