Tập hợp nghiệm của bất phương trình log 2 ( 2 x ) log 3 ( 3 x ) < 0 là
A. 1 3 ; 1
B. 1 3 ; 1 2
C. (0;1)
D. 1 2 ; 1
Tìm tập nghiệm của phương trình l o g ( x + 3 ) + l o g ( x - 1 ) = l o g ( x 2 - 2 x - 3 )
A. ∅
B. {0}
C. R
D. (1; +∞)
Tập hợp nghiệm của bất phương trình log 4 ( x + 12 ) > 1 log x 2 là
A. (-3; 4)
B. (-3; 1) ∪ (1; 4)
C. (0; 4)
D. (0; 1) ∪ (1; 4)
Tập hợp nghiệm của bất phương trình 3 x + 4 x > 5 x là
A. (-∞; 2)
B. (0; 2)
C. (2; +∞)
D. (0; 2]
Cho bất phương trình : 1 - x ( mx - 2 ) < 0 ( * )
Xét các mệnh đề sau:
(I) Bất phương trình tương đương với mx - 2 < 0;
(II) m ≥ 0 là điều kiện cần để mọi x < 1 là nghiệm của bất phương trình (*)
(III) Với m < 0 , tập nghiệm của bất phương trình là 2 m < x < 1
Mệnh đề nào đúng?
A. Chỉ (I)
B. Chỉ (III)
C. (II) và (III)
D. Cả (I), (II), (III)
Cho bất phương trình : 1 - x ( m x - 2 ) < 0 ( * ) Xét các mệnh đề sau:
(1) Bất phương trình tương đương với mx - 2 <0
(2) m ≥ 0 là điều kiện cần để mọi x< 1 là nghiệm của bất phương trình (*)
(3) Với m < 0 , tập nghiệm của bất phương trình là 2/m< x< 1
Mệnh đề nào đúng?
A. Chỉ (1)
B. Chỉ (3)
C. (2) và (3)
D. Tất cả đúng
Tập nghiệm của bất phương trình x - 3 x - 2 = x - 3 x - 2 là:
A. 3 ; + ∞
B. [ 3 ; + ∞ )
C. 3
D. 2 ; + ∞
Điều kiện: x > 2.
Với điều kiện trên , phương trình đã cho trở thành:
x - 3 = x - 3 ⇔ x - 3 ≥ 0 ⇔ x ≥ 3
Kết hợp điều kiện, tập nghiệm của phương trình là S = [ 3 ; + ∞ )
Tập nghiệm của hệ bất phương trình 2 x + 1 > 3 x - 2 - x - 3 < 0 là :
A. S = - 3 ; + ∞
B. S = - ∞ ; - 3
C. S = - ∞ ; - 3 ∪ 3 ; + ∞
D. - 3 ; 3
Ta có: 2 x + 1 > 3 x - 2 - x - 3 < 0 ⇔ - x > - 3 - x < 3 ⇔ x < 3 x > - 3 ⇔ - 3 < x < 3
Tập nghiệm của bất phương trình x - 3 x ≤ 0 là
A. S = [ 1 9 ; + ∞ )
B. S = 0 ; 1 9
C. S = 0 ∪ [ 1 9 ; + ∞ )
D. S = 0 ∪ 1 9 ; + ∞
Ta có:
x - 3 x ≤ 0 ⇔ x 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 3 x ≥ 1 ⇔ [ x = 0 x > 0 x ≥ 1 3 ⇔ [ x = 0 x > 0 x ≥ 1 9 ⇔ [ x = 0 x ≥ 1 9
Tập nghiệm của bất phương trình x 2 - x > x + 1 là:
A. [-1;0)
B. - ∞ ; - 1 3
C. [ - 1 ; - 1 3 )
D. - ∞ ; - 1
x 2 - x > x + 1 ⇔ [ x + 1 < 0 x 2 - x ≥ 0 x + 1 ≥ 0 x 2 - x > 0 ⇔ [ x < - 1 [ x ≥ 1 x ≤ 0 x ≥ - 1 x 2 - x > x 2 + 2 x + 1
[ x < - 1 x ≥ - 1 - 3 x > 1 ⇔ [ x < - 1 x ≥ - 1 x < - 1 3 ⇔ [ x < - 1 - 1 ≤ x ≤ - 1 3 ⇔ x < - 1 3
Chọn B.