Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2018 lúc 6:58

f(x) = (m + 1) x 2  - 2(3 - 2m)x + m + 1 ≥ 0 (1)

Với m = -1:

(1) ⇔ -10x ≥ 0 ⇔ x ≤ 0

Vậy với m = -1 bất phương trình (1) có nghiệm x ≤ 0

Suy ra, m = -1 (loại)

Với m ≠ -1:

f(x) = (m +1 ) x 2  - 2(3 - 2m)x + m + 1

Δ' = [-(3 - 2m) ] 2  - (m + 1)(m + 1) = (2m - 3 ) 2  - (m + 1 ) 2

= (2m - 3 + m + 1)(2m - 3 - m - 1) = (3m - 2)(m - 4)

Để bất phương trình (1) vô nghiệm thì:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Vậy không có giá trị nào của m để bất phương trình (1) vô nghiệm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2018 lúc 5:10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 2 2018 lúc 17:20

Đỗ Sử Nam Phương
Xem chi tiết
missing you =
26 tháng 11 2021 lúc 19:06

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 7 2017 lúc 11:17

(m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0 (1)

- Nếu m - 2 = 0 ⇔ m = 2, khi đó phương trình (1) trở thành:

2x + 4 = 0 ⇔ x = -2 hay phương trình (1) có một nghiệm

Do đó m = 2 không phải là giá trị cần tìm.

- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:

Δ' = (2m - 3)2 - (m - 2)(5m - 6)

= 4m2 - 12m + 9 - 5m2 + 6m + 10m - 12

= -m2 + 4m - 3 = (-m + 3)(m - 1)

(1) vô nghiệm ⇔ Δ' < 0 ⇔ (-m + 3)(m - 1) < 0 ⇔ m ∈ (-∞; 1) ∪ (3; +∞)

Vậy với m ∈ (-∞; 1) ∪ (3; +∞) thì phương trình vô nghiệm.

Phùng Minh Phúc
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 21:38

Pt vô nghiệm khi:

\(\Delta=\left(2m+1\right)^2-\left(5m^2+3m+16\right)< 0\)

\(\Leftrightarrow-m^2+m-15< 0\) (luôn đúng)

Vậy pt đã cho vô nghiệm với mọi m

Le Ngoc Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2017 lúc 9:15

Đáp án: A

Ngọc Mai
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 8 2021 lúc 9:10

\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)

Do đó pt luôn có nghiệm

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)           

\(A=4m^2-4m+1-4m+4\)

\(A=4m^2-8m+5\)

\(A=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\) m=1

Tick hộ nha 😘

missing you =
3 tháng 8 2021 lúc 9:08

pt có nghiệm \(< =>\Delta\ge0\)

\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)

\(< =>4m^2-4m+1-8m+8\ge0\)

\(< =>4m^2-12m+9\ge0\)

\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)

\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)

=>pt luôn có 2 nghiệm 

theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)

\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)

dấu"=" xảy ra<=>m=0

Nguyễn Việt Lâm
3 tháng 8 2021 lúc 9:09

\(\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)

\(A=4m^2-8m+5=4\left(m-1\right)^2+1\ge1\)

Dấu "=" xảy ra khi \(m-1=0\Leftrightarrow m=1\)