Giải các hệ phương trình 0 , 3 x - 0 , 2 y = 0 , 5 0 , 5 x + 0 , 4 y = 1 , 2
bài 1: giải các phương trình sau :
a) x^3-5x=0 b) căn bậc 2 của x-1=3
bài 2 :
cho hệ phương trình : {2x+my;3x-y=0 (I)
a) giải hệ phương trình khi m=0
b) tìm giá trị của m để hệ (I) có nghiệm (x;y) thỏa mãn hệ thức :
x-y+m+1/m-2=-4
bài 3:giải các phương trình sau
a)5x-2/3=5x-3/2 b) 10x+3/12=1+6x+8/9 c) 2(x+3/5)=5-(13/5+x) d) 7/8x-5(x-9)=20x+1,5/6
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
a) giải hệ phương trình {x+y=3 {2x-3y=1 b) giải phương trình x^ -7x +10=0
\(a,\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=6\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=5\\2x-3y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\2x-3.1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
b, \(x^2-7x+10=0\\ \Leftrightarrow x^2-5x-2x+10=0\\ \Leftrightarrow x\left(x-5\right)-2\left(x-5\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(a,\)\(\left\{{}\begin{matrix}x+y=3\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=9\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2.2-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(2;1\right)\)
\(b,x^2-7x+10=0\)
\(\Delta=b^2-4ac=\left(-7\right)^2-4.10=9>0\)
\(\Rightarrow\) Pt có 2 nghiệm \(x_1,x_2\)
Ta có :
\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{7+3}{2}=5\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{7-3}{2}=2\end{matrix}\right.\)
Vậy \(S=\left\{5;2\right\}\)
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
Cho phương trình: x2 - 2 (m - 1)x - m - 3 = 0 (1)
1) Giải phương trình với m = -3
2) Tìm m để phương trình (1) có 2 nghiệm thoả mãn hệ thức \(x_1^2+x_2^2\) = 10.
3) Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc giá trị của m
1, bạn tự giải
2,
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Vậy pt luôn có 2 nghiệm x1 ; x2 khi \(\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\left(luondung\right)\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=10\)
Thay vào ta được \(4\left(m-1\right)^2-2\left(-m-3\right)=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6=10\Leftrightarrow4m^2-6m=0\)
\(\Leftrightarrow m\left(4m-6\right)=0\Leftrightarrow m=0;m=\dfrac{3}{2}\)
Giải các phương trình và hệ phương trình sau:
a) 3 x 2 – 7x + 2 = 0
a) 3 x 2 – 7x + 2 = 0
Δ= 7 2 -4.3.2 = 49 - 24 = 25 > 0 ⇒ ∆ = 5
Phương trình có 2 nghiệm phân biệt:
Vậy tập nghiệm của phương trình là S = {2; 1/3}
Giải các phương trình và hệ phương trình sau :
1. \(3x^2-7x+2=0\)
2. \(x^4-5x+4=0\)
3. \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{matrix}\right.\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
Giải các hệ phương trình sau:
a, \(x+y=2\\\)
\(2x-3y=9\)
b, \(\dfrac{x}{y}=\dfrac{2}{3}\)
x+y-10=0
a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)
a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=2\\-5y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=2\\y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b, ĐKXĐ:\(y\ne0\)
\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{10-y}{y}=\dfrac{2}{3}\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3\left(10-y\right)=2y\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}30-3y=2y\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=30\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=6\\x=10-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=6\\x=4\left(tm\right)\end{matrix}\right.\)
1) Giải hệ phương trình $\left\{\begin{array}{l}2 x+y=19 \\ 3 x-2 y=11\end{array}\right.$.
2) Giải phương trình $x^{2}+20 x-21=0$.
3) Giải phương trình $x^{4}-20 x^{2}+64=0$.
3(2x+y)-2(3x-2y)=3.19-11.2
6x+3y-6x+4y=57-22
7y=35
y=5
thay vào :
2x+y=19
2x+5=19
2x=14
x=7
2/ x2+21x-1x-21=0
x(x+21)-1(x+21)=0
(x+21)(x-1)=0
TH1 x+21=0
x=-21
TH2 x-1=0
x=1
vậy x = {-21} ; {1}
3/ x4-16x2-4x2+64=0
x2(x2-16)-4(x2-16)=0
(x2-16)-(x2-4)=0
TH1 x2-16=0
x2=16
<=>x=4;-4
TH2 x2-4=0
x2=4
x=2;-2
Bài 1 :
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được :
\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )
Bài 2 :
\(x^2+20x-21=0\)
\(\Delta=400-4\left(-21\right)=400+84=484\)
\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)
Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)
\(t^2-20t+64=0\)
\(\Delta=400+4.64=656\)
\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)
Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)
\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\hept{\begin{cases}6x+3y=57\\6x-4y=22\end{cases}\hept{\begin{cases}7y=35\\3x-2y=11\end{cases}}}}\)
\(\hept{\begin{cases}y=5\\3x-2.5=11\end{cases}\hept{\begin{cases}y=5\\3x=21\end{cases}\hept{\begin{cases}y=5\\x=7\end{cases}}}}\)
\(a=1,b=20;c=-21\)
\(\Delta=\left(20\right)^2-\left(4.1.-21\right)=484\)
\(\sqrt{\Delta}=\sqrt{484}=22\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-20+22}{2}=1\left(TM\right)\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=-21\left(TM\right)\)
\(3,x^4-20x^2+64=0\)
đặt \(x^2=a\)ta có pt
\(a^2-20a+64=0\)
\(a=1;b=-20;c=64\)
\(\Delta=\left(-20\right)^2-\left(4.1.64\right)=144\)
\(\sqrt{\Delta}=12\)
\(a_1=\frac{-b+\sqrt{\Delta}}{2a}=16\left(TM\right)\)
\(a_2=\frac{-b-\sqrt{\Delta}}{2a}=4\left(TM\right)\)
\(< =>x_1=\sqrt{16}=4\left(TM\right)\)
\(x_2=\sqrt{4}=2\left(TM\right)\)
vậy bộ n0 của pt là (\(4;2\))
Giải hệ phương trình :
\(\int^{x^3-9y^2+27y-27=0}_{\int^{y^3-9z^2+27z-27=0}_{z^3-9x^2+27x-27=0}}\)
ĐÂY LÀ HỆ 3 ẨN 3 PHƯƠNG TRÌNH. CÁC BẠN CHÚ Ý NHÉ!
\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)
Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)
Với \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )
\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )
Từ (I) ; ( II ) ; (III ) => x = y =z
Thay x = y vào pt (1) giải ra nghiệm
bài này mình cộng 3 hệ lại cuối cùng được ntn:
\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\)
đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@