Chứng minh rằng với mọi x, y ta luôn có:
( x 4 - x 3 y + x 2 y 2 - xy 3 + y 4 ) ( x + y ) = x 5 + y 5 .
Chứng minh rằng với mọi số thực x,y ta luôn có (x+y)2
≥ 4xy
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(x=y\)
ta co
vt (x+y)2=x2+y2+2xy
=x2-2xy+y2+4xy≥ 4xy (dpcm)
Mọi người giúp mình với. Chứng minh rằng với mọi x,y là số thức ta luôn có: \({x^2} + {y^2} + xy + 1 \ge \sqrt 3 (x + y)\) Tks all ^^
Chứng minh rằng với mọi \(x,y\) ta luôn có
\(\left(x,y+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)=x^3+y^3\)
Nhanh lên ạ giúp mình zới :>
chứng minh rằng với mọi x;y ta luôn có : (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
Chứng minh rằng với mọi x,y là số thực ta luôn có: \(x^2+y^2+xy+1\ge \sqrt3(x+y)\)Cảm ơn mọi người.
Chứng minh rằng với mọi số tự nhiên x và y, ta luôn luôn có: (2x+6y) chia hết cho 2
Ta có :
2x + 6y = 2x + 2.3y = 2.(x + 3y) chia hết cho 2 với mọi số tự nhiên x và y
Ta có:
2x + 6y = 2.3y.(x + 3y) chia hết cho mọi số tự nhiên x và y
Chứng minh rằng với mọi số dương x,y ta luôn có bất đẳng thức \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\)\(\ge\)\(\frac{9}{4}\)
\(xy\le\frac{\left(x+y\right)^2}{4}\)( bđt cauchy )
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)( bđt cauchy )
\(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{xy}{\left(x+y\right)^2}\ge2+\frac{\frac{\left(x+y\right)^2}{4}}{\left(x+y\right)^2}=2+\frac{1}{4}=\frac{9}{4}\)
Chứng minh rằng biểu thức:
A = x(x – 6) + 10 luôn dương với mọi x
B = x2 – 2x + 9y2 – 6y + 3 luôn dương với mọi x, y
`A=x(x-6)+10=x^2-6x+10`
`=x^2 -2.x .3 + 3^2 + 1`
`=(x-3)^2+1 >0 forall x`
`B=x^2-2x+9y^2-6y+3`
`=(x^2-2x+1)+(9y^2-6y+1)+1`
`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.
chứng minh rằng với mọi x,y \(\in\)Q ta luôn có: |x+y|\(\le\)|x|+|y|
chứng minh rằng với mọi x,y ∈Q ta luôn có: |x+y|≤|x|+|y|