Rút gọn rồi tính giá trị biêu thức:
a) I = s ( s 2 - t ) + t ( t 2 + s ) tại t = -1 và s = 1;
b) N = u 2 ( u - v ) - v ( v 2 - u 2 ) tại u = 0,5 và v = − 1 2 .
rút gọn rồi tính giá trị của biểu thức
a, A=\(s(s^2-1) + t(t^2+s) với t=-1;s=1\)
b, B=\(u^2(u-v) - v(v^2-u^2) tại u=-0,5 ; v=-1/2\)
bn tự thay t và s mà đề cho vào rồi tính bình thường
còn câu cuối tương tự
Rút gọn rồi tính giá trị của biểu thức:A=(2x+3).(5x-1)-5x.(2x-7) với x=0
Giup mik
Ta có: (2x+3)(5x-1) - 5x(2x-7) = (2x+3)(5x-1) - 5x( 2x+3-10)
= (2x+3)(5x-1) - 5x(2x+3) + 50x
= (2x+3) (5x - 1 - 5x) + 50x
= (2x+3) .-1 +50x
Thay x =0 => (2.0+3) . -1 +50.0 = -3
Bài 2:
a) tìm điều kiện xác định của biểu thức S
b) Rút gọn rồi tính giá trị của biểu thức S tại x=0;1
c) tìm giá trị lớn nhất của biểu thức S
a) ĐKXĐ: \(x\ne0;x\ne-2\)
b) \(S=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{\left(x+2\right)\left(x+2-x^2\right)}{x}-\dfrac{x^2+6x+4}{x}\)
\(=\dfrac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)
\(=\dfrac{-x^3-2x^2-2x}{x}\)
\(=\dfrac{x\left(-x^2-2x-2\right)}{x}\)
\(=-x^2-2x-2\)
Với \(x=0\Rightarrow\) loại
Với \(x=1\), thay vào \(S\) ta được
\(S=-1^2-2\cdot1-2=-5\)
c) Có: \(S=-x^2-2x-2\)
\(=-\left(x^2+2x+2\right)\)
\(=-\left(x^2+2x+1\right)-1\)
\(=-\left(x+1\right)^2-1\)
Ta thấy: \(\left(x+1\right)^2\ge0\forall x\ne0;x\ne-2\)
\(\Rightarrow-\left(x+1\right)^2\le0\forall x\ne0;x\ne-2\)
\(\Rightarrow S=-\left(x+1\right)^2-1\le-1\forall x\ne0;x\ne-2\)
Dấu \("="\) xảy ra khi: \(x+1=0\Leftrightarrow x=-1\left(tmdk\right)\)
\(\text{#}\mathit{Toru}\)
Rút gọn và tính giá trị của biểu thức:
A = \(\sqrt{-8a}\) - \(\sqrt{4a^2-4a+1}\) với a =\(\dfrac{-1}{2}\)
rút gọn biểu thức rồi tính giá trị biểu thức:
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2
Thực hiện phép nhân, rút gọn rồi tính giá trị của biểu thức:
a) x(x - y) + y(x + y) tại x= -6 ; y= 8.
b) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) tại x= 1/2 và y = -100.
a: \(=x^2-xy+xy+y^2=x^2+y^2=100\)
b \(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=-1\cdot\left(-100\right)=100\)
a)` x(x - y) + y(x + y) `
`=x^2-xy+xy+y^2`
`=x^2+y^2`(1)
thay x= -6 ; y= 8 vào 1 ta đc
\(\left(-6\right)^2+8^2=36+64=100\)
b)`) x(x^2 - y) - x^2 (x + y) + y (x^2 - x) `
`=x^3-xy-x^3-xy+yx^2-xy`
`=\(-3xy+yx^2\)(2)
thay `x= 1/2 và y = -100` ta đc
\(-\dfrac{3.1}{2}.\left(-100\right)+\dfrac{\left(-100\right).1}{2}=150-50=100\)
Bài 1 rút gọn và tính giá trị biểu thức
a,\(I=s\left(s^2-t\right)+\left(t^2+s\right)\) tại t= -1 và s= 1
b,\(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)\) tại u= 0,5 và v = \(-\frac{1}{2}\)
ai làm hộ e với e cần gấp ak
a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)
Thay t = -1 và s = 1 vào biểu thức trên ta được :
\(1+1+1+1=4\)
b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)
\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)
Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)
\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)
Tìm gtnn của x^2-4x+3. 2)rút gọn rồi tính giá trị biểu thức:A=(2x-1)(x+5)-3(x-2)^2+(x+4)(x-4) tại x =-2. Xin giúp với ạ
Tìm GTNN của : \(x^2-4x+3\)
\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\) nên \(\left(x-2\right)^2-1\ge-1\)
Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2
2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)
\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)
Khi x = -2 thì A = 21 . (-2) -33 = -75
với a<-1, giá trị rút gọn của biêu thức |a|+a =