Cho điểm M nằm trên đường tròn đường kính AB. Giá trị của M A → 2 + M A → . A B → bằng
A. 0 →
B.0
C. A B 2
D. 1 2 A B 2
Cho nửa đường tròn (O) đường kính AB và một điểm M nằm trên
nửa đường tròn đó. H là chân đường vuông góc hạ từ M xuống AB.
a/ Khi AH=2cm, MH=4cm. Hãy tính độ dài các đoạn thẳng: AB,MA, MB.
b/ Khi điểm M di động trên nửa đường tròn (O). Hãy xác định vị trí của M để biểu thức:
\(\frac{1}{MA^2}+\frac{1}{MB^2}\)có giá trị nhỏ nhất
a. áp dụng hệ thức lượng ta có:
\(MH^2=AH.BH\Rightarrow BH=\frac{4^2}{2}=8cm\)
\(\Rightarrow\hept{\begin{cases}AB=AH+HB=2+8=10cm\\MA=\sqrt{AH.AB}=\sqrt{20}cm\end{cases}}\)
b. ta có :
\(\frac{1}{MA^2}+\frac{1}{MB^2}\ge\frac{4}{MA^2+MB^2}=\frac{4}{AB^2}=const\)
dấu bằng xảy ra khi \(MA=MB\Rightarrow M\text{ nằm chính giữa cung tròn AB}\)
Xét đường tròn đường kính AB=4 và một điểm M di chuyển trên đoạn AB, đặt AM=x (H.6.19). Xét hai đường tròn đường kính AM và MB. Kí hiệu S(x) là diện tích phần hình phằng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ. Xác định các giá trị của x để diện tích S(x) không vượt quá một nửa tổng diện tích hai hình tròn nhỏ.
Ta có: AM<AB nên \(0 < x < 4\)
Diện tích hình tròn đường kính AB là \({S_0} = \pi .{\left( {\frac{{AB}}{2}} \right)^2} = 4\pi \)
Diện tích hình tròn đường kính AM là \({S_1} = \pi .{\left( {\frac{{AM}}{2}} \right)^2} = \frac{{\pi .{x^2}}}{4}\)
Diện tích hình tròn đường kính MB là \({S_2} = \pi .{\left( {\frac{{MB}}{2}} \right)^2} = \pi .\frac{{{{\left( {4 - x} \right)}^2}}}{4}\)
Diện tích phần hình phẳng nằm trong hình tròn lớn và nằm ngoài hai hình tròn nhỏ là \(S(x) = {S_0} - {S_1} - {S_2} = 4\pi - \frac{{{x^2}}}{4}\pi - \frac{{{{\left( {4 - x} \right)}^2}}}{4}\pi = \frac{{ - {x^2} + 4x}}{2}\pi \)
Vì diện tich S(x) không vượt quá 1 nửa tổng diện tích hai hình tròn nhỏ nên:
\(S(x) \le \frac{1}{2}\left( {{S_1} + {S_2}} \right)\)
Khi đó : \(\frac{{ - {x^2} + 4x}}{2}\pi \le \frac{1}{2}.\frac{{{x^2} - 4x + 8}}{2}\pi \)
\( \Leftrightarrow - {x^2} + 4x \le \frac{{{x^2} - 4x + 8}}{2}\)
\( \Leftrightarrow - 2{x^2} + 8x \le {x^2} - 4x + 8\)
\( \Leftrightarrow 3{x^2} - 12x + 8 \ge 0\)
Xét tam thức \(3{x^2} - 12x + 8\) có \(\Delta ' = 12 > 0\) nên f(x) có 2 nghiệm phân biệt \({x_1} = \frac{{6 - 2\sqrt 3 }}{3};{x_2} = \frac{{6 + 2\sqrt 3 }}{3}\)
Mặt khác a=3>0, do đó ta có bảng xét dấu:
Do đó \(f(x) \ge 0\) với mọi \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)
Mà 0<x<4 nên \(x \in \left( { - \infty ;\frac{{6 - 2\sqrt 3 }}{3}} \right] \cup \left[ {\frac{{6 + 2\sqrt 3 }}{3}; + \infty } \right)\)
Cho điểm M nằm trên nửa đường tròn tâm O đường kính AB. Qua M vẽ tiếp tuyến xy và gọi C, D lần lượt là hình chiếu vuông góc của A, B trên xy. Xác định vị trí của điểm M trên (O) sao diện tích tứ giác ABCD đạt giá trị lớn nhất
Ta có ABCD là hình thang vuông tại C và D
Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)
=> AD+BC=2OM=2R. Chú ý rằng CD ≤ AB (hình chiếu đường xiên)
=> S A B C D = 1 2 A D + B C . C D
= R.CD ≤ R.AB = 2 R 2
Do đó S A B C D lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB
Cho nửa đường tròn (O) đường kính AB và một điểm M nằm trên nửa đường tròn đó. H là chân đường vuông góc hạ từ M xuống AB.
a/ Khi AH=2cm, MH=4cm. Hãy tính độ dài các đoạn thẳng: AB, MA, MB.
b/ Khi điểm M di động trên nửa đường tròn (O). Hãy xác định vị trí của M để biểu thức: 1/MA^2 + 1/MB^2 có giá trị nhỏ nhất.
c/ Tiếp tuyến của (O) tại M cắt tiếp tuyến của (O) tại A ở D, OD cắt AM tại I. Khi điểm M di động trên nửa đường tròn (O) thì I chạy trên đường nào
Cho đường tròn tâm O đường kính AB. Từ 1 điểm M nằm trên nửa đường tròn vẽ tiếp tuyến xy. Vẽ AD và BC cùng vuông góc với xy.
C/m MC=MDC/m AD+BC có giá trị không đổi khi M di chuyển trên nửa đường tròn.C/m AD là tiếp tuyến của đường tròn đường kính CD.Xác định vị trí của M trên nửa đường tròn để diện tích tứ giác ABCD lớn nhất.1. Ta có AD // OM // BC ; OA = OB
=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD
2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi.
3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD
Lại có AD vuông góc với MD => đpcm
4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)
Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB
Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2
Cho đường tròn (O;R) và AB là đường kính. Gọi d là đường trung trực của OB. Gọi M, N là 2 điểm phân biệt thuộc đường thẳng d. Trên các tia OM,ON lấy lần lượt các điểm M' và N' sao cho OM.OM'=ON.ON'=R^2
a) Chứng minh rằng bốn điểm M,N,M',N' thuộc cùng 1 đường tròn.
b) Khi điểm M chuyển động trên d, chứng minh rằng điểm M' thuộc 1 đường tròn cố định
c) Tìm vị trí điểm M trên d để tổng MO+MA đạt giá trị nhỏ nhất
d) Tìm vị trí điểm M trên d nhưng M không nằm trong đường tròn (O;R) để tổng MO+MA đạt giá trị nhỏ nhất
Cho điểm M nằm trên đường tròn ngoại tiếp tam giác đều ABC, đường tròn có bán kính R. Tính giá trị của T = M A 4 + M B 4 + M C 4
A. 4R2
B. 9R2
C. 12R2
D. 18R2
cho nửa đường tròn tâm O có đường kính AB. từ một điểm m nằm trên nửa đường tròn bất kì. Vẽ tiếp tuyến xy kẻ AD; BC cùng vuông góc với xy tại D và C
CMR : MC = MD ; Tông AD+BC có giá trị không phụ thuộc vào vị trí điểm m trên nửa đường tròn; đường tròn đường kính AD tiếp sức với AB
Cho đường tròn tâm O, bán kính R. M là điểm nằm ngoài đường tròn. Vẽ tiếp tuyển MA của đường tròn (A là tiếp điểm). Vẽ đường kính AB của (O), MB cắt (O) tại C. Gọi D là trung điểm của dây BC. a) Chứng minh 4 điểm: M, A, O, D cùng nằm trên một đường tròn. b) Chứng minh 4Rẻ=BC BM
a: Xét tứ giác MAOD có
\(\widehat{MAO}+\widehat{ODM}=180^0\)
Do đó: MAOD là tứ giác nội tiếp