Cho tam giác ABC có A ^ = 80 ° , B ^ = 50 ° . Chứng minh tam giác ABC cân.
Cho tam giác ABC có A = 80 độ , B = 50 độ . a, chứng minh tam giác ABC cân . b, kẻ BD vuông góc AC ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) . Chứng minh tam giác ABD = tam giác ACE . c, tam giác AED là tam giác gì?
Cho tam giác ABC có góc A=80 độ,góc B=50 độ.chứng minh tam giác ABC cân
Xét tam giác ABC, có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(80^o+50^o+\widehat{C}=180^o\)
=> \(\widehat{C}=50^o\)
Ta có:
\(\widehat{B}=50^o\)
\(\widehat{C}=50^o\)
Suy ra: \(\widehat{B}=\widehat{C}\)
=> Tam giác ABC cân tại A.
Góc C bằng :
180o-80o-500=50o
vì Góc C =Góc B nên suy ra Tam giác ABC là tam giác cân
1. Cho tam giác MNP có góc M = 40 độ, góc N = 100 độ. Chứng minh tam giác MNP là tam giác cân.
2. Cho tam giác ABC có góc A = 80 độ, góc B = 50 độ. Đường thẳng song song với BC cắt tia đối của tia AB tại D và cắt tia đối của tia AC tại E. Chứng minh rằng tam giác ADE là tam giác cân
Bài 1:
Tam giác MNP có: \(\widehat{M}=40^o;\widehat{N}=100^o\)
Tổng số đo 3 góc của 1 tam giác là 180o, ta được:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow40^o+100^o+\widehat{P}=180^o\\ \Leftrightarrow140^o+\widehat{P}=180^o\\ \Leftrightarrow\widehat{P}=180^o-140^o=40^o\)
Vì: \(\widehat{M}=\widehat{P}=40^o\) => Tam giác MNP là tam giác cân tại N (ĐPCM)
Bài 1: Cho tam giác ABC có \(\widehat{A}=80^o,\widehat{B}=50^o\)
a) Chứng minh tam giác ABC cân
b) Đường thẳng song song với BC cắt tia đối của tia AB ở D, cắt tia đối của tia AC ở E. Chứng minh tam giác ADE cân.
cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.a,chứng minh tam giác ABC=tam giác AED . b,chứng minh tam giác ABC là tam giác cân
a: Xét ΔABC vuông tại B và ΔAED vuông tại E có
AC=AD
\(\widehat{A}\) chung
Do đó: ΔABC=ΔAED
b: Đề sai rồi bạn
bài1 Cho tam giác ABC cân tại A .D là điểm trên cạnh ac .đường thẳng qua d song song với AB cắt BC tại E Chứng minh tam giác dec cân
bai2 Cho tam giác ABC có A bằng 80 độ B bằng 50 độ
a chứng minh tam giác ABC cân
B đường thẳng song song với BC cắt tia đối của tia AB tại D cắt tia đối của tia AC tại E Chứng minh tam giác ade cân
bai3 Cho tam giác ABC cân tại A đường thẳng song song với b c cắt các cạnh AB AC lần lượt tại d và e Gọi O là giao điểm của Be và CD Chứng minh
a tam giác ade cân
B tam giác OBC cân
cac bqn lam nhanh giup minh minh dang can gqp
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.a,chứng minh tam giác ABC=tam giác AED . b,chứng minh tam giác ABC là tam giác cân c, gọi I là trung điểm của BE . CMR A,I,M thẳng hàng
cho tam giác abc cân tại a ( ab=ac) h là trung điểm bc a. cho a=50 dộ tính b,c b. Chứng minh: tam giác AHB= tam giác AHC c. chứng minh ah vuông góc bc d. chứng minh tam giác AEK là tam giác cân
Bn xem lại câu d nhé
`a)`
Có `Delta ABC` cân tại `A`
`=>hat(B)=hat(C)=(180^0-hat(BAC))/2`
hay `hat(B)=hat(C)=(180^0-50^0)/2`
`=>hat(B)=hat(C)=130^0/2=65^0`
`b)`
Có `H` là tđ `BC(GT)=>BH=HC`
Xét `Delta ABH` và `Delta ACH` có :
`{:(AB=AC(GT)),(AH-chung),(BH=CH(cmt)):}}`
`=>Delta ABH=Delta ACH(c.c.c)(đpcm)`
`c)`
Có `AB=AC=>A in` trung trực của `BC`(1)
`BH=CH=>H in` trung trực của `BC`(2)
Từ (1) và (2)`=>AH` là trung trực của `BC`
`=>AH⊥BC(đpcm)`
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
a) Xét ΔBAD và ΔBMD có
BA=BM(gt)
\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))
BD chung
Do đó: ΔBAD=ΔBMD(c-g-c)