Tam giác ABC có B ^ − C ^ = 30 ° . Đường trung trực của BC cắt AC ở K.
a) Chứng minh K B C ^ = K C B ^ .
b) Tính số đo góc A B K ^ .
c) Biết AB = 3 cm, AC = 5 cm. Tính chu vi tam giác ABK.
Cho tam giác ABC vuông ở A có góc C =30 độ .Đường trung trung trực của BC cắt AC ở M.Chứng minh BM là tia phân giác của góc ABC
Cho tam giác abc có c=30 độ đường trung trực của BC cắt AC ở M
cm:BM là tia phân giác của abc
Cho tam giác ABC vuông tại A có góc B bằng 30 độ. Từ trung điểm I của cạnh BC vẽ đường thẳng d vuông góc với BC cắt AC ở E, cắt AB ở K
CMR: a) EB=EC
b) BE là tia phân giác góc ABC
c) BE là đường trung trực của AI
d) tam giác BKC đều
chả hiểu chi cả???????????????????????????????????????????????????????????????????????????????????????????????????
cho đề bài mà còn ko đúng thì ai mà giải đc ?
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt (O) tại K.
a) Chứng minh tam giác BHK cân rồi suy ra BC là trung trực của HK
b) Vẽ đường kính AM của (O). Chứng minh: tam giác ABD đồng dạng tam giác AMC và OA vuông góc EF tại Q
c) Chứng minh AQ.AM=AE.AC và tứ giác QHDM nội tiếp.
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
Cho tam giác ABC vuông tại B, có góc ACB khác 30 độ. Gọi E, F theo thứ tự là trung điểm của BC, AC. Đường phân giác góc BAC cắt EF tại I và cắt BC tại K.
a) CM: tam giác ADH đồng dạng với tam giác BDA
b) CM: KC/KE=AC/IE
c) Qua K kẻ KH vuông góc với AC tại H. CM: tam giác BKH đồng dạng với tam giác AFI
Câu 1 :Cho tam giác ABC có góc B-góc C =40 độ Đường trung trực của BC cắt AC ở I Tính số đo góc ABI
Câu 2 :Tam giác ABC có AB=6 BC=4 Qua trung điểm M của AC kẻ đường thẳng vuông góc với AC cắt A tại I Tính chu vi tam giác IBC Câu 3 :Cho góc xOy = 60 độ điểm A nằm trong góc đó Vẽ các điểm B và C sao cho Ox là đường trung trực của AB. Oy là đường trung trực của AC Tính các góc của tam giác OBC
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
Cho tam giác ABC vuông tại A có góc C=30° . Kẻ đường trung trực của đoạn thẳng AC , cắt AC tại H và cắt BC tại D. Nối A và D. Kẻ đường phân giác của góc ABC cắt AD tại K, cắt DH tại I. a) Chứng minh tam giác DHA=tam giác DHC b) Chứng minh tam giác ABD đều. c) gọi E,F là hình chiếu vuông góc của I xuống các đường thẳng BC,BA . Chứng minh IE=IF=IK
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA = BE. Tia
phân giác của góc B cắt cạnh AC tại K.
a) Chứng minh tam giác ABK =tam giác EBK và AK = KE
b) Chứng minh EK ⊥BC
c) Chứng minh: BK là đường trung trực của đoạn thẳng AE