Tìm n ∈ Z, biết: (n−5)⋮(n+2)
A. n∈{±3;±9;±5}
B. n∈{−9;−3;−1;5}
C. n∈{9;1;3}
D. n∈{±1;±5}
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Câu 2: Tìm n thuộc Z sao cho n-1 chia hết cho n+5 mà n+5 chia hết cho n-1
Câu 3: Tìm x thuộc Z biết : (x+5).(3x-12) lớn hơn 0
Câu 4: Tìm x và y thuộc Z biết (x-7).(xy+1)=3
Câu 5: Tìm a và b thuộc Z biết : ab=a-b
Câu 25. Tìm n ∈ Z, biết: (n + 5) ⋮ (n + 1)
A. n∈ {±1; ±2±4}
B. n∈ {-5;-3;-2;0;1;3}
C. n∈ {0;1;3}
D. n∈ {±1; ±5}
1) Cho p là số nguyên tố lớn hơn 3. Hỏi p2 là số nguyên tố hay hợp số.
2) Tìm n thuộc Z sao cho: n - 1 là bội của n + 5 và n + 5 là bội của n - 1.
3) Tìm a,b thuộc Z biết a.b = 24 và a + b = -10
4) Tìm n thuộc Z để:
a) n2 - 7 là bội của n + 3
b) n + 3 là bội của n2 - 7
Giúp mình nhé các bạn! Biết làm bài nào thì làm nhé!
A= n+2/ n-5( n€z;n khác 5
a) tìm n để A€z
b) tìm n để A = 2/3
Giúp mình giải
1. Tìm n∈Z, biết
a)-n/4=-9/n
b)n/4=18.n+1
2. Tìm x,y∈Z,biết
:a)x/7=9/y
b) -2/x=y/5
c)x-4/y-3=4/3; x - y = 5
Bài 1 :
a) \(\frac{-n}{4}=\frac{-9}{n}\Rightarrow-n^2=-36\Rightarrow n^2=36\Rightarrow n=\pm6\)
b) \(\frac{n}{4}=18\cdot n+1\Rightarrow n=\left(18n+1\right)\cdot4\)
=> n = 72n + 4
=> n - 72n = 4
=> -71n = 4 => n = \(-\frac{4}{71}\)
Mà n thuộc Z => n không thoả mãn điều kiện của đề bài :
Bài 2 :
\(\frac{x}{7}=\frac{9}{y}\Rightarrow xy=63\)
Ta có : 63 = 1.63 = 3.21 = 7.9 = 9.7 = 21.3 = 63.1 = (-1)(-63) = (-3)(-21) = (-7)(-9) = (-9)(-7) = (-21)(-3) = (-63)(-1)
Vậy (x,y) = {(1,63) ; (3,21) ; (7,9) ; (9,7) ; (21,3) ; (63,1) ; (-1,-63) ; (-3,-21) ; (-7,-9) ; (-9,-7); (-21,-3) ; (-63,-1)}
b) \(\frac{-2}{x}=\frac{y}{5}\Rightarrow xy=-10=\left(-1\right)\cdot10=\left(-2\right)\cdot5=\left(-5\right)\cdot2=\left(-10\right)\cdot1\)
Tự tìm x , y là xong
c) Cách 1 : x - y = 5 => x = 5 + y
=> \(\frac{x-4}{y-3}=\frac{5+y-4}{y-3}=\frac{4}{3}\)
=> \(\frac{y+1}{y-3}=\frac{4}{3}\)
=> \(3\left(y+1\right)=4\left(y-3\right)\)
=> 3y + 3 = 4y - 12
=> 3y + 3 - 4y + 12 = 0
=> -y + 15 = 0
=> -y = -15 => y = 15
+) x = 5 + y = 5 + 15 = 20
Cách 2 : \(\frac{x-4}{y-3}=\frac{4}{3}\)
=> 3(x - 4) = 4(y - 3)
=> 3x - 12 = 4y - 12
=> 3x - 12 - 4y + 12 = 0
=> 3x - 4y = 0 => 3x = 4y => \(\frac{x}{4}=\frac{y}{3}\)
Đặt \(\frac{x}{4}=\frac{y}{3}=k\)
=> x = 4k,y = 3k
=> x - y =4k - 3k
=> k = 5
+) x = 4k = 4.5 = 20
+) y = 3k = 3.5 = 15
Vậy x = 20,y = 15
Bài 1: Tìm x,y thuộc Z biết:
a, xy - 2x+y =5
b, 2xy - x+y=0
Bài 2: Tìm n thuộc Z biết:
a, (n2 - n+5) chia hết cho (n-1)
b, (n2 +n+7) chia hết cho (n+1)
c, (n2 + 3n + 3) chia hết cho (n+1)
Tìm n thuộc Z để A thuộc Z biết A= n+5 phần n+2
vì A = n+5 / n+2 và A e Z
=> n+5 : hế+ n+2
=> ( n+2) + 3 chia hế+ cho n+2
mà n+2 chia hế+ cho n+2
=> 3 chia hế+ cho n+ 2
=> n+2 e Ư( 3) = { 1;-1;3;-3}
+a có :
+rường hợp 1: n+2 = 1
n = 1-2
n = -1
+rường hợp 2 : ...
làm như +rên +a sẽ ra kế+ quả là n E { -1;-3;1;-5}
cho phân số A=\(\frac{n-5}{n^2+3}\)n thuộc Z
a) chứng tỏ rằng a luôn tồn tại
b)tìm phân số a biết n=-5,n=0,,n=5
a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0
=> A luôn tồn tại
b) bn chỉ việc thay n rùi tính A là ra
A= 11/n +5 ( n thuộc Z )
a) điều kiện để A là phân số
b)tìm ps A biết n=2;8
c) tìm n biết A= 1/2
d)tìm n thuộc Z để A thuộc Z
e)tìm n thuộc Z để A rút gọn được
a) Để A là phân số thì \(n+5\ne0\)
hay \(n\ne-5\)