Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Phạm Thùy Nhung
Xem chi tiết
Lê Gia Linh
Xem chi tiết
T.Q.Hưng.947857
25 tháng 2 2020 lúc 8:49

1

A ,x2-6x+10=(x-3)2+1>1=>A<5

dấu = xảy ra khi x=3

B x2-2x+5=(x-1)2+4>4=>A>-2

dâu = xay ra khi x=1

Khách vãng lai đã xóa
Yakata Yosi Mina
25 tháng 2 2020 lúc 8:53

a, Ta có : \(A=\frac{5}{x^2-6x+10}=\frac{5}{\left(x-3\right)^2+1}\)
Để A lớn nhất <=> \(\left(x-3\right)^2+1\)nhỏ nhất
Ta lại có:
\(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Vậy MaxA= 5/1=5

Khách vãng lai đã xóa
Yakata Yosi Mina
25 tháng 2 2020 lúc 8:54

Tương tự phần b : Tách mẫu = \(\left(x-1\right)^2+4\)

Khách vãng lai đã xóa
nguyễn thị hồng hạnh
Xem chi tiết
 Mashiro Shiina
17 tháng 2 2021 lúc 19:18

\(A=\dfrac{3x+1}{2x^2-x+3}\)

\(\Rightarrow A-1=\dfrac{3x+1}{2x^2-x+3}-1\)

\(A-1=\dfrac{3x+1-2x^2+x-3}{2x^2-x+3}\)

\(A-1=\dfrac{-2x^2+4x-2}{2x^2-x+3}=\dfrac{-2\left(x^2-2x+1\right)}{2x^2-x+3}\)

\(A-1=\dfrac{-2\left(x-1\right)^2}{2x^2-x+3}\le0\)

\(\Rightarrow A\le1\)

Dấu bằng xảy ra khi x=1

Nguyễn My
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Lucian Tiffany
25 tháng 1 2017 lúc 20:12

\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)

\(=2+\frac{1}{\left(x^2-x+1\right)}\)

\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)

Sakura Kinomoto
25 tháng 1 2017 lúc 20:28

Gọi pt trên là A.

Ta có A = 2 + \(\frac{1}{x^2-x+1}\)

=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.

Sakura Kinomoto
25 tháng 1 2017 lúc 20:29

Mình nhầm, x = 1/2 nhé ^^

Hà Phạm Như Ý
Xem chi tiết
Nguyễn Anh Quang
Xem chi tiết
_Guiltykamikk_
5 tháng 8 2018 lúc 15:38

Đặt  \(A=x^2-3x\)

\(A=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}\)

\(A=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{9}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy  \(A_{Min}=-\frac{9}{4}\Leftrightarrow x=\frac{3}{2}\)

Đặt  \(B=-x^2-2x\)

\(-B=x^2+2x\)

\(-B=\left(x^2+2x+1\right)-1\)

\(-B=\left(x+1\right)^2-1\)

Mà  \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow-B\ge-1\Leftrightarrow B\le1\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(B_{Max}=1\Leftrightarrow x=-1\)

Dương Thị Phương Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2018 lúc 7:57

a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;

    * Nếu M ≤ a ⇔ 1 M ≥ 1 a ;

b) Ta có x 2 - 4x + 12 = ( x   -   2 ) 2  + 8 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2  

Giá trị nhỏ nhất của N = − 1 2  khi x = -1.

Anh Đức
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
31 tháng 10 2020 lúc 6:20

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3

Khách vãng lai đã xóa