Cho dãy số u n với u 1 = 2 và u n + 1 = 2 + u n , n ≥ 1 . Chọn phát biểu đúng:
A. u n không bị chặn trên
B. u 3 = 2 + 2 2
C. u n là dãy giảm
D. u n bị chặn
cho dãy số \(\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n\left(\frac{1-\sqrt{5}}{2}\right)^n\right]\) với n = 1;2;3....
tìm 10 số hạng đầu tiên của dãy
lập công thức truy hồi Un+2 theo Un+1 và Un
lập quy trình ấn phím Un+2 và U25 đến U30
Bài 1: Cho dãy số u1= 2; u2 = 20; Un+1 = 2Un + Un-1 ( n ≥ 2)
a) Viết quy trình ấn phím liên tục tính Un và Sn ( với Sn = u1 + u2 +…+ un)
b) TÍnh Un; Sn với n =20; n = 30
Bài 2: Cho dãy số được xác định bởi: u1 = 1; u2 = 2;\(U_{n+2}=\hept{\begin{cases}2U_{n+1}+3U_n\left(n:le\right)\\2U_n+3U_{n+1}\left(n:chan\right)\end{cases}}\)
a) Tính giá trị u10; u15; u21.
b) Gọi Sn là tổng của n số hạng đầu tiên của dãy số Un . Tính S10;S15; S20
Mong mn giup do
1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:C=2B+A:E=E+C:A=B:B=C
CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục
Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182
2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục
D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B
CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục
a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983
b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711
Cho dãy số U 1 , U2 . . . Un
Dãy số trên có là dãy số cách đều không nếu Un = n2 + n
( Với mọi n lớn hơn hoặc bằng 1 )
Đố thánh nào làm được
Dãy số Un được gọi là dãy số cách đều khi : Un+1 - Un = d (Hằng số - Không phụ thuộc vào n) Nếu d.> 0 thì dãy số gọi là dãy số tăng, nếu d< 0 thì dãy số là dãy giảm.
Dãy số mà Un = n2 + n với \(\forall n\in N,n\ge1\).Ta xét hiệu Un+1 - Un = (n +1)2 + (n + 1) - (n2 + n) = 2n + 2 Không phải là hằng số (Vì hiệu này còn chứa n) Vậy dãy số đã cho không phải là dãy số cách đều.
a) Cho đa thức f(x) = (x2 + 3x - 1)2012
Tính tổng các hệ số của các hạng tử chứa lũy thừa bậc chẵn của x.
b) Cho dãy số các số tự nhiên u0, u1, u2, ... có u0 = 1 và un+1.un-1 = k.un (với k, n thuộc R*). Tính k và u1, biết u2012 = 2012
Có cần bạn bình luận ko vậy
Chị ơi em mới học lớp 7 nha chị
Mai ChiCho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{4}\\u\left(n+1\right)=\left(u\left(n\right)\right)^2+\dfrac{u\left(n\right)}{2}\end{matrix}\right.\)
CM với mọi n thì 0<u(n)<\(\dfrac{1}{4}\) và\(\dfrac{u\left(n+1\right)}{u\left(n\right)}\le\dfrac{3}{4}\)
Từ đó suy ra limu(n)=o
Cho dãy số U1=3;U2=5;... và Un+2=3Un+1-2Un-2. Với mọi n>1.gọi Sn và Pn là tổng và tích của n số hạng đầu tiên, tính S2008 và P10
a) Cho đa thức f(x) = (x2 + 3x - 1)2012
Tính tổng các hệ số của các hạng tử chứa lũy thừa bậc chẵn của x.
b) Cho dãy số các số tự nhiên u0, u1, u2, ... có u0 = 1 và un+1.un-1 = k.un (với k, n thuộc R*). Tính k và u1, biết u2012 = 2012
a) Giả sử đa thức f(x) sau khi lũy thừa bậc 2012 viết ra dưới dạng tổng quát:
\(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_2x^2+a_1x+a_0\)
Thì: \(f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0=\left(1^2+3\cdot1-1\right)^{2012}=3^{2012}\)(1)
Hay TỔNG của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Và: \(f\left(-1\right)=a_0-a_1+a_2-a_3+...=\left(\left(-1\right)^2+3\left(-1\right)-1\right)^{2012}=\left(-3\right)^{2012}=3^{2012}\)(2)
Hay HIỆU của tổng hệ số các hạng tử chứa lũy thừa bậc chẵn và tổng hệ số các hạng tử chứa lũy thừa bậc lẻ là 32012
Vậy, tổng các hệ số của hạng tử chứa lũy thừa bậc chẵn của x là: 1/2(TỔNG + HIỆU) = 32012.
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{2}\\u\left(n+1\right)=\dfrac{u\left(n\right)}{n+1}\end{matrix}\right.\)
a, CM : với mọi n thì 0<u(n) và \(\dfrac{u\left(n\right)}{n+1}\)\(\le\dfrac{1}{2}\)
b, Từ đó suy ra limu(n)=0