Tính:
2-4+6-8+...-2000+2002
x-10/1994+X-8/1996+X-6/1998/+ X-4/2000+X-2/2002=X-2002/2+X-2000/4+X-1998/6+X-1996/8+X-1994/10
(X -10/1994 -1) + (X-8/1996 - 1) + (X-6/1998 - 1)+ (X-4/2000 - 1) + (X-2/2002 - 1) = (X-2002/2 - 1) + (X-2000/4 - 1) + (X-1998/6 - 1) + (X-1996/8 - 1) + (X-1994/10 - 1)
=> x-2004/1994 + x-2004/1996 + x-2004/1998 + x-2004/2000 + x-2004/2002 = x-2004/2 + x-2004/4 + x-2004/6 + x-2004/8 + x-2004/1994
=> x-2004/1994 + x-2004/1996 + x-2004/1998 + x-2004/2000 + x-2004/2002 - x-2004/2 - x-2004/4 - x-2004/6 - x-2004/8 - x-2004/1994 = 0
=> (x - 2004)(1/994 + 1/1996 + 1/1998 + 1/2000 + 1/2002 + 1/2 + 1/4 + 1/6 + 1/8) = 0
Mà (1/994 + 1/1996 + 1/1998 + 1/2000 + 1/2002 + 1/2 + 1/4 + 1/6 + 1/8) \(\ne\)0
=> x - 2004 = 0
=> x = 2004
Vậy x = 2004
Sửa (x - 2004) (1/1994 + 1/1996 + 1/1998/+ 1/2000 + 1/2002 + 1/2 + 1/4 + 1/6+ 1/8 + 1/10)
= (x - 2004) (1/1994 + 1/1996 + 1/1998/+ 1/2000 + 1/2002 - 1/2 -1/4 - 1/6 - 1/8 - 1/10)
:)))
tính : A=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003
A=(1+2-3)+(-4+5+6-7)+(-8+9+10-11)+......(-2000+2001+2002-2003)
A=0+0....+0
A=0
Ta thấy 2-3-4=-5
6-7-8=-9
.............
1998-1999-2000=-2001
=> 1+2-3-4+5+6-7-8+....-1999-2000+2001-2003=1-5+5-9+9-...-2001+2001+2002-2003
=> A= 1+2002-2003=0
Vậy A=0
\(=\left(1+2-3\right)+\left(-4+5+6-7\right)+...+\left(-2000+2001+2002-2003\right)\)
\(=0+0+0+...+0\)
\(=0\)
học tốt
Tính:
2-4+6-8+...-2000+2002
số số hạng là :(2000-2):2+1=1000
2-4+6-8...-2000+2002
=-2+-2+...+-2+2002
khi tinh ra thi còn số số hạng:1000:2=500 số
vậy:
=-2x500+2002
=-1000+2002
=1002
vậy tổng bằng 1002
x-10/1994+x-8/1996+x-6/1998+x-4/2000+x-9/2002=x-2002/2+x-2000/4
+x-1998/6+x-1996/8+x-1994/10
x-10/1994+x-8/1996+x-6/1998+x-4/2000+x-9/2002=x-2002/2+x-2000/4
+x-1998/6+x-1996/8+x-1994/10
Tính nhanh
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
`S = 1+2-3-5+5+6-7-8+9+10-...+1998-1999-2000+2001+2002`
có :
`(2002 - 1) :1 +1 = 2002` ( số hạng)
`2002 : 4 = 500 (dư 2)`
`=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002`
`=(-4)+(-4)+...+(-4) +2001 +2002` có `500` só `-4`
`=500 .(-4) + 2001+ 2002`
`= (-2000)+2001+2002`
`=1+2002`
`=2003`
Tính nhanh
a) A=1+2-3-4+5+6-7-8+9+10-...+2013+2014-2015-2016
b) B=2-4+6-8+..-2000+2002
\(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
\(\left(\frac{x-10}{1994}-1\right)\)+\(\left(\frac{x-8}{1996}-1\right)\)+\(\left(\frac{x-6}{1998}-1\right)\)+\(\left(\frac{x-4}{2000}-1\right)\)+\(\left(\frac{x-2}{2002}-1\right)\)=\(\left(\frac{x-2002}{2}-1\right)\)+\(\left(\frac{x-2000}{4}-1\right)\)+\(\left(\frac{x-1998}{6}-1\right)\)+\(\left(\frac{x-1996}{8}-1\right)\)+\(\left(\frac{x-1994}{10}-1\right)\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)=\(\frac{x-2004}{2}\)+\(\frac{x-2004}{4}\)+\(\frac{x-2004}{6}\)+\(\frac{x-2004}{8}\)+\(\frac{x-2004}{10}\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)- \(\frac{x-2004}{2}\)- \(\frac{x-2004}{4}\)- \(\frac{x-2004}{6}\)- \(\frac{x-2004}{8}\)- \(\frac{x-2004}{10}\)=0
suy ra (x-2004) . ( \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\))=0
Vì \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\) khác 0
nên x-2004=0 suy ra x=2004
Tính: \(D=1+2-3-4+5+6-7-8+...-1999-2000+2001+2002-2003\)
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ... + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + ... + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
D = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ............. - 1999 - 2000 + 2001 + 2002 - 2003
D = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ............ + ( 1997 + 1998 - 1999 - 2000 ) + 2001 + 2002 - 2003
D = ( -4 ) + ( -4 ) + .............. + ( -4 ) + ( 2001 + 2002 - 2003 )
D = ( -4 ) . 500 + 2000
D = -2000 + 2000
D = 0
mn giải giúp em bài toán với ạ !
BÀI 1 :TÍNH NHANH
A=3/4*5 +3/5*6 +3/6*7 +3/7*8 +...+3/99*100BÁI 2 :KHÔNG THỰC HIỆN PHÉP TÍNH , HÃY SO SÁNH TỔNG SAU VỚI 4
1999/2000 +2000/2001 +2001/2002 +2002/2003
Ta có :
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(A=3\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=3\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(A=3.\frac{6}{25}\)
\(A=\frac{18}{25}\)
Vậy \(A=\frac{18}{25}\)
Chúc bạn học tốt ~
\(A=\frac{3}{4.5}+\frac{3}{5.6}+\frac{3}{6.7}+...+\frac{3}{99.100}\)
\(\Rightarrow A=3.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=3.\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{3.24}{100}\)
\(=\frac{3.4.6}{25.4}\)
\(\Rightarrow A=\frac{18}{25}\)