tìm p để p+2va p+14 là 2 sso nguyên tos cùng nhau
tìm 2 số nguyên tos cùng nhau có tổng là 101201323200
Tìm STN n để hai sso sau là hai số nguyên tố cùng nhau:
a) 4n + 3 và 5n + 7
b) 7n + 13 và 4n + 8
a) Gọi ước chung của 4n + 3 và 5n + 7 là d
Ta có :
+) 4n + 3 ⋮ d => 5( 4n + 3 ) ⋮ d => 20n + 15 ⋮ d (1)
+) 5n + 7 ⋮ d => 4( 5n + 7 ) ⋮ d => 20n + 21 ⋮ d (2)
Lấy (2) trừ (1) ta được :
20n + 21 - 20n - 15
= 6
=> ước chung của 4n + 3 và 5n + 7 là 6 = { 1; 2; 3; -1; -2; -3 }
Dễ thấy 4n + 3 và 5n + 7 đều ko chia hết cho 2 và 3
=> ước chung của 4n + 3 và 5n + 7 là 1
=> d = 1
Vậy ta có 4n + 3 và 5n + 7 là 2 số nguyên tố cùng nhau ( đpcm )
b) tương tự
7 . Tìm` n thuộc N để
a) n + 2 vaf 2n + 2 nguyên tố cùng nhau
b) n + 7 và 3n + 14 nguyên tố cùng nhau
Câu 1: Tìm ƯCLN ( 2n+3 ; n+2 0
Câu 2: CMR a) 2số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
b) 2 số lẻ là 2 số nguyên tố cùng nhau.
Câu 3: Tìm n để 3n+14 chia hết cho n+2.
câu 1 :
gọi UCLN (2n+3;n+2) là d
ta có :
2n+3 chia hết cho d
n+2 chia hết cho d => 2(n+2) chia hết cho d => 2n+4 chia hết cho d
=>(2n+4)-(2n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy UCLN(2n+3;n+2) =1
câu 2 :
a)
gọi hai số tự nhiên liên tiếp là a;a+1
gọi UCLN(a;a+1) là d
ta có : a chia hết cho d
a+1 chia hết cho d
=>(a+1)-a chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(a;a+1 )=1
=>a;a+1 nguyên tố cùng nhau
Vậy hai số tự nhiên liên tiếp nguyên tố cùng nhau
b) bạn xem lại đề VD : hai số lẻ là 15 và 27 ko nguyên tố cùng nhau nhé !
câu 3:
3n+14 chia hết cho n+2
=>3(n+2) + 8 chia hết cho n+2
=>n+2 thuộc U(8)={1;-1;2-2;4;-4;8;-8}
=>n thuộc {-1;-3;0;-4;2;-6;6;-10}
tìm số nguyên tố p để p+2 ; p+6 ; p+8 ; p+12 ; p+14 cùng là số nguyên tố
Mọi số tự nhiên đều viết dưới dạng 5k; 5k+1 ; 5k+2 ; 5k+3 ; 5k+4; 5k+5
- Nếu p = 5k+1 => p+14=5p+15= 5(p+3) chia hết cho 5 (loại)
- Nếu p = 5k+2 => p+8 = 5p+10 = 5(p+2) chia hết cho 5 (loại)
- Nếu p = 5k+3 => p+12 = 5p+15 = 5(p+3) chia hết cho 5 (loại)
- Nếu p = 5k+4 => p+6 = 5p+10 = 5(p+2) chia hết cho 5 (loại)
=> p chỉ có thể là 5k. Mà p là nguyên tố nên p = 5
Vậy p = 5
Học tốt! (Mình chỉ biết chứng minh vậy thôi)
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Tìm số nguyên tố p để p + 10 và p + 14 cùng là số nguyên tố
Cách này nữa nè em:
p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
c)Xét trường hợp p= 2=> p+10= 12(không phải là số nguyên tố)
Xét trường hợp p= 3=> p+ 10= 13; p+ 14= 17 (đều là số nguyên tố)
Xét p>3=> p có một trong 2 dang 3k+1; 3k- 1
+)Với p= 3k+1=> p+14= 3k+1+14=3k+15 chia hết cho 3
+)Với p= 3k-1=> p- 10= 3k- 1+ 10= 3k+9 chia hết cho 3
Vậy p= 3 thì p+10 và p+14 cũng là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
tìm số nguyên tố n để 2n+7 và 5n+2 là hai số nguyên tố cùng nhau